基于以往的经验,用python将教育部官网的1997-2019年的教育统计数据爬下来,保存到excel里。
数据来源:教育部官网【moe.gov.cn/】-文献-教育统计数据
举例来说:
这次相较于之前,就多用了个函数pandas.read_html
,将网页表格转成数据框,进而导出excel。
按照官网的层级建立文件夹,结果示例:
过程呢,基本上也就是先分析网页情况结构,所有年份中,只有2010-2012年这3年没有分类,其他的都有2级文件夹。
因为害怕爬取太频繁了,就设立了随机睡眠时间,时间还挺长的,在爬取整个数据的过程中就可以去干其他的事情了。
具体代码:
import pandas as pd
from urllib import request
import time,random,re,os
import urllib.request
from lxml import etree
# 随机获取headers
def getheaders():
user_agent_list = [ \
"Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/22.0.1207.1 Safari/537.1" \
"Mozilla/5.0 (X11; CrOS i686 2268.111.0) AppleWebKit/536.11 (KHTML, like Gecko) Chrome/20.0.1132.57 Safari/536.11", \
"Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.6 (KHTML, like Gecko) Chrome/20.0.1092.0 Safari/536.6", \
"Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.6 (KHTML, like Gecko) Chrome/20.0.1090.0 Safari/536.6", \
"Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/19.77.34.5 Safari/537.1", \
"Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/536.5 (KHTML, like Gecko) Chrome/19.0.1084.9 Safari/536.5", \
"Mozilla/5.0 (Windows NT 6.0) AppleWebKit/536.5 (KHTML, like Gecko) Chrome/19.0.1084.36 Safari/536.5", \
"Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1063.0 Safari/536.3", \
"Mozilla/5.0 (Windows NT 5.1) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1063.0 Safari/536.3", \
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_0) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1063.0 Safari/536.3", \
"Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1062.0 Safari/536.3", \
"Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1062.0 Safari/536.3", \
"Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1061.1 Safari/536.3", \
"Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1061.1 Safari/536.3", \
"Mozilla/5.0 (Windows NT 6.1) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1061.1 Safari/536.3", \
"Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1061.0 Safari/536.3", \
"Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/535.24 (KHTML, like Gecko) Chrome/19.0.1055.1 Safari/535.24", \
"Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/535.24 (KHTML, like Gecko) Chrome/19.0.1055.1 Safari/535.24", \
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.106 Safari/537.36"
]
UserAgent = random.choice(user_agent_list)
header = {'User-Agent':UserAgent}
return header
# 获取页面html
def get_page(url):
headers = getheaders()
req = urllib.request.Request(url = url, headers = headers)
html = urllib.request.urlopen(req).read().decode('utf_8')
time.sleep(random.random()*3)
return html
# 获取每年链接及标题
def get_every_year_title_url_ls():
url = 'http://www.moe.gov.cn/s78/A03/moe_560/jytjsj_2019/'
html = get_page(url)
selector = etree.HTML(html)
every_year_title_url_li = selector.xpath('/html/body/div[1]/div/div[5]/div[1]/ul/li')
every_year_title_url_ls = []
for li in every_year_title_url_li:
every_year_title_url = []
# 获取链接标题
every_year_title = li.xpath('a/text()')[0]
every_year_title_url.append(every_year_title)
# 获取链接
every_year_url = li.xpath('a/@href')[0]
if '../' in every_year_url:
final_url = 'http://www.moe.gov.cn/s78/A03/moe_560/' + every_year_url.replace('./','').replace('.','')
else:
final_url = url
every_year_title_url.append(final_url)
every_year_title_url_ls.append(every_year_title_url)
return every_year_title_url_ls
# 获取当年的分类链接及标题[2010-2012年这3年没有分类链接]
def get_category_title_url_ls(url):
html = get_page(url)
selector = etree.HTML(html)
category_title_url_li = selector.xpath('//*[@id="list"]/li')
category_title_url_ls = []
for li in category_title_url_li:
category_title_url = []
# 获取链接标题
category_title = li.xpath('a/text()')[0]
category_title_url.append(category_title)
# 获取链接
category_url = li.xpath('a/@href')[0].replace('./','')
category_title_url.append(url + category_url)
category_title_url_ls.append(category_title_url)
return category_title_url_ls
# 获取每个分类链接的页面数量
def get_page_num(url):
html = get_page(url)
item_num = int(re.findall(r'var recordCount = (.+?);',html)[0])
print('共' + str(item_num) + '条信息')
if item_num < 20:
page_num = 1
elif item_num%20 == 0:
page_num = item_num // 20
else:
page_num = item_num // 20 + 1
return page_num
# 获取每个分类链接下每页页面的链接及标题
def get_page_url_ls(url):
page_num = get_page_num(url)
page_url_ls = [url]
for i in range(page_num - 1):
page_url = url + 'index_'+ str(i + 1) + '.html'
page_url_ls.append(page_url)
return page_url_ls
# 获取每页内的所有链接及标题
def get_item_title_url_ls(url):
html = get_page(url)
selector = etree.HTML(html)
item_title_url_li = selector.xpath('//*[@id="list"]/li')
item_title_url_ls = []
for li in item_title_url_li:
item_title_url = []
# 获取链接标题
item_title = li.xpath('a/text()')[0]
item_title_url.append(item_title)
# 获取链接
item_url = li.xpath('a/@href')[0].replace('./','')
if 'index_' in url:
new_url = '/'.join(url.split('/')[:-1]) + '/'
final_url = new_url + item_url
else:
final_url = url + item_url
item_title_url.append(final_url)
item_title_url_ls.append(item_title_url)
return item_title_url_ls
# 获得每个item的df
def get_df(url):
html = get_page(url)
df = pd.read_html(html,skiprows = 6, header = 0)[0]
df = df.drop(df.tail(6).index)
return df
# 将df导入excel
def to_excel(excel_path, title_url):
title = title_url[0].replace('\r','').replace('\n','').replace('\u3000','').replace('\t','')
item_url = title_url[1]
df = get_df(item_url)
if not os.path.exists(excel_path):
os.makedirs(excel_path)
excel_name = excel_path + title + '.xlsx'
df.to_excel(excel_name,index = 0)
if __name__ == "__main__":
every_year_title_url_ls = get_every_year_title_url_ls()
for n,i in enumerate(every_year_title_url_ls):
print('【文件夹】',str(2019 - n) + '年' )
fold1 = i[0]
# 2010,2011,2012年只有1级文件夹
if 2019-n == 2010 or 2019-n == 2011 or 2019-n == 2012:
for n in get_page_url_ls(i[1]):
for l in get_item_title_url_ls(n):
print(l)
excel_path = 'D:\\2_study\\4_实战\\python\\jyb_sta\\data\\' + fold1 + '\\'
to_excel(excel_path, l)
else:
category_title_url_ls = get_category_title_url_ls(i[1])
for j in category_title_url_ls:
print('【文件夹】',j)
fold2 = j[0]
# 2004年的非“附表”有3级文件夹
if 2019-n == 2004 and '附表' != j[0]:
for z in get_category_title_url_ls(j[1]):
print('【文件夹】',z)
fold3 = z[0]
for m in get_page_url_ls(z[1]):
for k in get_item_title_url_ls(m):
print(k)
excel_path = 'D:\\2_study\\4_实战\\python\\jyb_sta\\data\\' + fold1 + '\\' + fold2 + '\\' + fold3 + '\\'
to_excel(excel_path, k)
else:
for m in get_page_url_ls(j[1]):
for k in get_item_title_url_ls(m):
print(k)
excel_path = 'D:\\2_study\\4_实战\\python\\jyb_sta\\data\\' + fold1 + '\\' + fold2 + '\\'
to_excel(excel_path, k)
当然,爬取下来的数据还需要根据具体需要进行整理了,比如,把某类数据按照年份合并起来,这个当然也可以用python来执行啦~
GZ号:amazingdata (数据格子铺)
后台回复:教育统计数据,可下载所有的excel数据