PaddleHub部署deeplabv3p_xception65_humanseg


官方的demo文档没有随着版本而更新,导致 坑太多,特写了一下。

1. 部署版本
测试成功的版本(经历有限,只测试出一种能用的):

ubuntu 20 (最初是centos7,一直试了不行,后改为Ubuntu系统)
python 3.8.10 (如果装不好报各种缺包的错误)
pip 20.0.2
paddlepaddle 1.8.5 (刚开始装的2.X的试了不行)
paddlehub 1.7.0 按照官网demo选的最低版本

2. 部署过程
把上面的版本安装好后,可是启动,这个按照官方demo 文档来


启动成功并不是官方描述的success,而是:
其实上面的警告不影响使用。
2. 调用过程
调用过程的官网文档是坑最多的,基本就是猜+蒙了。下面是蒙的对的方式:

  • 2.1 上传参数
    实际的上传数据json数据,即图片要使用base64编码。
img1 = cv2_to_base64(cv2.imread("C:/Users/Lenovo/Pictures/2.jpg"))
data = {'images': [img1]}
  • 2.2 request header
headers = {"Content-type": "application/json"}
  • 2.2 request url
 url = "http://121.220.131.209:8866/predict/deeplabv3p_xception65_humanseg"
  • 2.2 response
    响应数据是下面这样的:
{'msg': '', 'results': [{'data': '/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/wAALCALQBQABAREA/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/9oACAEBAAA/AP5/6KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK6TwX8I/iJ8Qih8I+F7i8VzhZEA2k5x/OvXfBH/BMX9r/wAfui6H8PFAfo00xUfopr2bwT/wb6ft6eNFR4tI0q2D45kuCcfoK9W8J/8ABrB+254hCNfeONEsw3UfZmfH/j4rW1n/AINQ/wBsfTyTa/E7R5QPXTz/APHa5fU/+DX79uWyJFp4h0m4I9LZlz/4+a5+/wD+DaX/AIKJwMU07SNJuD2zMyf0NUU/4Npv+Cpc8witfh3oDhjgM2tlfzzHXc+EP+DUT/gp14jVG1OPwlp+7ru1ZpMfkgrsbP8A4M/v+ChM/wDx8fEbwfF/wORv61F4i/4NB/8AgoZpFt52l+P/AAhevtzs8x4/wzzXlvjP/g2A/wCCqXhNna28C+G9RjTobXXcMfwZP614/wCN/wDgiD/wU78CT+Tf/su6pefNjfp13BIP1cVzw/4JE/8ABSL+P9kzxKv+8YP/AI5WZqv/AAS4/wCCguik/wBofsp+Kl29Slsj/wDoLmuH8Z/sj/tRfD19njL9nzxhYjbkvJ4fnZAPdlUgfnXA3+nahpVy1lqdjNbTL96KeIow+oPNQ0UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUVufDn4f+IPiZ4ttPCXhyzeWa5lVWKrkIueWNfuv/wS7/4JweH7DwhpKa5oKs0cKbi8eST+Nfq/8HP2Pfht4d0qFY/DsAZVH/LEV7H4f+DfhPS0VbfSYlwOyCulsvBuj2oAjs0H0Wp5PDOlP9+0X/vmmxeEtDVi32GM/wDABVpPDWjJ0sIv++BUqaHpSH5bKMf8AFWI7C1jGEhUfRaf9mh/uCkNrAwwYwfqKik0qxk4e2Q/Varz+FPD9wczaVA3+9EKrv4F8LN10G2/78rUMvw48Fy8S+HLQ/W3X/CsrWvgN8JvEERh1fwJpk6kYIlskb+YryX4w/8ABLT9iP41aLNo3jn9nzwzeRzKQ/maRETyPpX55ftf/wDBpH+yD8SILvWfgQ974O1B1JiXT5mMAPYeUxKAfQCvyh/a/wD+DcH9v/8AZlurvUPCfhiHxrpELMUl0sGO42g8ZR+Dx6N+FfC/jv4a/EH4X6y/h74i+CtT0S9jYq1vqdk8LEjrjcBuHuMisSiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiit/wP8AC/x98R7z7D4L8LXd+3OWhiO0fVules+DP+Cdv7RHiqRftXh42aMRyyMxx+Qr9Kv+CYf/AASdTwibTxB4g0hpbuQq8s0sfJNftT+zF8A9P8HaTbwR2QTYoAwtfSOiaLHaWyoqYwBWvFAFHSn+X7/pR5fv+lCxhadRRk+tKAW70oT1NOooooowD2qNgrdRVDVfD2matE0N5ZRSKw5DoDXzt+1L/wAEu/2Wv2rNDn0T4m/CzSL1J1IZ5bCMtz7kV+R/7d//AAaE6Lb2t54w/ZF8e3enTjMi6LqEfn27dSQDu3L6DBwPSvxu/an/AGEf2ov2N/Es3h346/C2/wBNSJ9qanFC0lrJ7iTHHXo2DXkFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFWdG0jUdf1W30TSLV57q6mWOCJBksxOBX6zf8E3/+CB/h74o+D7bx98ZvNvLmco62rRkRRgjONvf6mv1T/Z5/4JF/Ar4ZaXHb6Z4Ttk2x4H7gDt9K9Q/4YA8CWn/Hh4fhHpiMV678G/2a9H8H2UUUWmIm0Dote0aD4Yt9MiVYogMDsK3YYgq4qSiiiiiinoCOtLRRRRRRSFATnNJsA6tRsz0aoLuzhukMUyAg+teL/tK/sQ/BP9pHwpd+HPH/AIMs76O5hZG86FT1GO4r8Gf+Cnn/AAa0fEvwbqt78Rf2MtME9oXaSXw9LKAgX/pkcfKfbpx261+RPxk+Afxl/Z88Uy+DPjN8OdU8PahE5XydQtiquR12P91/wJrkKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK1vBvgfxZ8QNaj8PeDtCuL+7lYBYoIycZ7k9APrX6f/APBKD/gjN481LxtZfE34saV86sjW9qY8rEO/Ucn3r+gr9nH4BaT4C8HW2jW2nIgjjUYC+gr2nR/CNvAgCxAfhWxb+G7YAbox+VXrbTYbcBVQDFWVRVGAKWnKmeTS7F9KQoc8U0gjqKKUKTTgAOgpaKKKKKKKKQpk5zSBSvJNG9T1FBCNwKgutMtLyNorm1R1YYIYZr5m/bY/4JXfswfts+D7vwv8Tvh5p8zXMZC3QtwJI2zncD1B96/Cb/gox/wakfG/4CW9748/ZV8TN4k0uLdIdD1E4nVc/djkA5wB0bOT3Ffkn418D+MPhz4kufB/jvw3eaTqdnIUubK+gMboQSOh6jIOCOD2rKoooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooq/wCGfC/iHxlrMPh7wvpE99e3DYit7dNzH/Ae9fov+wL/AMG//wASvj/PaeI/jDeyWVlKQ32C3DLxxwzdT+GK/Y79kn/ghj+zz8BrW3Ok+DrPzEwTIbYZJ9Scc19wfDT9nDwh4ItI7fTNKhjCAAbYwK9N0vw9bWUYSOIDHtWlFbJGMYqUADgUUAE9BTgnqadRRQQDwab5fPXinAY4FFFFFFFFFFFFFJtXrilwB0FFFVdS0ix1WBra9t0kRhgq65FfIP7c3/BFD9ib9trw/c23xB+E2lx6lIjeTqtnZpFcxMQRuWRAGB57GvwL/wCClH/Bst+1F+yhqV94w/Z7t7rxr4XjLSC08vF5AmMkAjiQDpzg8dSa/MvX/D2veFNYuPD3ifRbrTr+1kKXNnewNFLE3oysARVOiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiu3+BPwF8d/H7xnb+EvBmlyyB5QtxcrGSsQP9fav3X/AOCUn/BGf4c/DXT7PxL4i8LtdajIitNdXShnY4+nH0r9evg18BPDHgnTYbXTdJSIIoAAUV6xYaHb26gLGBjtitKG1SMcCplTjCinhAKXAHQUUUUEE9DiiiiiiiiiiiiiiiiiiiiiiiggHqKo6x4f0rW7R7PUbNJY3Uhldc5Br4B/4KU/8ECP2S/26dLn1m78Fx6V4iVXa21jTQIplY4/iA5GQODwa/ny/wCCjP8AwQg/a4/YO1O812y8O3firwpC7FdTsbYmaCMHgyIv3vqvr0r4ddHjco6lWU4IIwQaSiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiivav2Tv2IPi5+1N4ltrbw9oVzFpTyASX3lH5xn+H/ABr96v8AgmP/AMEifC3wZ0Cxe58MqJgqs7vFyx7kk9TX6m/Cn4MaR4S06K3trFUCKBgL7V6VYaVDaoFVAMVdWHHRacE9TTgMcCiiiiiiiiiiiiiiiiiiiiiiiiiiiiiikZAwxiuR+Jfwe8F/FHRJ9B8WaHb3dvOhWSOaIMCK/Gf/AIKx/wDBr98Ovit/aHxW/Zgii8O+IG3SyW0C/uLpufvp+XIweB9K/Az9oz9ln45fsp+OJ/AXxt8C3ek3cUhWKd4yYLgc8o+MHp04PtXntFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFfRP/BPH9h3xR+2F8V7XT302b+w7a4X7XKEOJjkfID6ev5etf03/sD/APBOH4b/AAc8D6XZ2HhqCNoIFH+pA6V9seFPh3pPh+1SG1tEUKBjC10sFrHEMIo/KpggFLRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRSFQetVb/Tra+jMVxEGBHII618rft9f8Et/wBnr9tP4f3vhjx54GsriWaI+XObZd6Ng4YHGQQcHNfzi/8ABRL/AIN4v2uP2SfEeoeIvhT4WufFvhNHZ4RbAm6t064IIAcAd8546E81+fWsaNrHh7UpdG1/SrmxvLdts9reQNFJG3oysAQfrVaiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiuu+Bvwg8SfHP4m6X8OPDFpJJNfXCrK8a58uPI3N/T6mv6fv+CRH/BM3wn8C/hvpj/2GscqwKWJjwScjmv0y8KeFrTQbFLe3jACjFbqLtGMUtFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBAPUVHJGGGCMisfxJ4M0PxNZPY6pp0U0bqQyyICDmvhn9uz/ggd+x7+2ZZ3F74j+HtrZ6qysYdTsIhFOhPcOuD+tfjL+25/war/ALU3wSnu/EH7PGs/8JRpsbM0en30eydVz0Drw3HQEfU1+Zvxg+A3xi+AXiR/Cfxi+HWqeH75GKiPULUqr4/ut91unY1yNFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFW9D0TVfEusW2gaHYyXN3eTLFbwRLlnYnAFfvd/wQe/4I7xeAtKtPir8RNFWbV70CSWSWP7g4IUZ6AZr91vhz4H0/wno0Vja26oEXAAGK6xUCjgUtFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBGRioyMcGo5hkEe1c14v0DT9WtXhvEUqw5yK/Mz/gq9/wSt+Ef7T3hC9F3pka3m0tDPHHh0bkggjoa/m9/bD/ZI8dfshfFKfwD4rSSa2bLWF8YyokX0PbcP1ryWiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiitHwn4S8SeOfEFt4W8I6NPf6hdyBLe1t03MxP8AIe9ftN/wRj/4ID+Jhqun/Gn44WwN8yrJDaGPKQAjOBkcn1Nfv38FPgtonwz8O22kadaIiwxhRtXHYV6NDEEGFHAqSiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiimuO9Mddy9a5vxez29m7qcYFePeOYLXVIXjuoVkBHINfkL/wcB/sseEvHnw0utc03w1CNQtYRLbXCKQyOqkg8V+BMsUkMjQyoVdGKspHII6im0UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUVufDj4ceM/i14zsfAPgDQ5tR1TUJhHb28KE9TjccdFGeTX9Cv/BEn/gg94e+D/h6y+KPxb0NbzxBdLHLLLcQD93kE7Vz0Ar9nvh/8NNB8FaVDp+l2McSxoFARAOgxXVRwqgwBin0UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU12OcU2srXtPS/t2iZcgjuK888V+CkEbNFBk47CviD/go98GL7xx4IvrEaW8ga3YcJn+E1/M7+2d8BNf+CHxf1G2vdKkhsry5Z4GZMAMTyP6/nXkFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFaHhTwtr3jfxLY+EPC+myXeoajcpBaW0Sks7scAf4nsK/o4/4IS/8ABD7w78B/B+mfFz4p6El34k1GJJ7maZM+Wdxwi56Af/X71+y/hHwjpfhrS4rCwtFjSNAAqj0rbRAvOKdRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRSOOM0wnAzUMqqw5rN1GzgmUhkzXlPxq8AaRrukTRXNmHBQ9vavxn/4K6fsH+FfiDoWoS2ug/vwrNG6AZVscEcV+FnxJ+HXiL4YeK7nwt4ispIpIZCI3ZcCRc9RWBRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRX7Qf8ABt7/AMEfNQ+IPiG3/an+Mnh1hGyBtDsruLBiQOp3kH+Jh69Bx61/R54M8G6X4U0a30vT7VI44UCqqjGK3o12jpTqKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKCMjFRMMjFRSDvUEsG8cisPxN4ci1C2aNkzkV81ftGfst6P43srgT2StvU9RX5K/8ABQb/AIJR+Gtenm1hdChJjdnyUFfkn+1X+z/a/BXVjawKkeJdoRWHP4V43RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRX2p/wRg/4Ju63+3F8f7LWPEekTHwro10HmcxHZczKQdue6jv78diK/rP/Zo+A/hX4KeCLPwv4a0yO3ht4gqJHGFwOPSvV0RQo4p1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFI65GaikXIyKjCDvTJ7dZFxisDxN4dhu7Rw8YOQe1fFX7fGi+GfD3grUtR1UiMJC5JwK/l+/4KHfE7RfH3x61Cw8OXLyWunzOjsRwXz2+g/nXgtFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFdz+zr8B/GH7RfxT034beELCWV7qdftU0aEiGLPLE+vp/wDWNf1hf8Eg/wBhvwj+zH8FNI0TS/DkFtJHApdliwSSq5Jr72s7dYYwAvQVbAwMUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUdaYyEcikpCoPQVT1XAs3LDop61+VH/BfH4523ws+BGuXYuRE32SXBzjtX8ueq6ldazqdxq19IWmup3llYnqzEk/zqvRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRWh4W8L654z8QWvhjw3YPc3t5KI4IUGSSf6V+/P/BCv/glHY/C/QbLxx4w0tZtUuws080kfOSucD0A6V+4fw48JWvhzR4bO3hCqiAAAewrrY1x+FPooooooooooooooooooooooooooooooooooooooooooooooooprIOoptQ38QltmQjqK/KD/AIOKPhEPFn7M/iCaK03sthMeB7Cv5bCCDgiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiptO06+1a/h0vTLV57i4kEcMMa5Z2JwABX7O/8ER/+CMGrXkdp8Y/ippG6+uCkkMckWRCh52jP6nvX75/Af4GaV8O9CttPsrRUEcagALjoK9ds7VYYwijoKsgY4FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFIwyMUzoeaSchoiB6V8d/8FU/hEfib+z/AOINMSHcW0+UAbc9cV/Hf8YPB934A+KfiHwZexbJNO1eeHb/ALIc7f0xXOUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUVJZ2l1qF3FYWUDSzTyLHDEgyXYnAAHqSa/af/gjN/wQYk1i30T48fGrTxc31wq3FtZyR5S2GegB6nHU1++XwI+BGg/DHw1baNpenJEkMaqAqYxgV6rZ2aQIFVasqu0UtFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFGAeopkiAr061598c/BEHi3wRqOmSwBxLbsuCK/kB/4LY/AG4+BH7cviCIaeYLbWna6h+XG5g5Vj+W2vkWiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiivvn/gh5/wTV8XftYfHTT/AIneJvD0g8N6RcLJaNKh23MoYfN7qO3qfoDX9V/wD+DWifDnwXYaHp9gkS20AQBVxivTre2SJAFUCpQAOlLRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRSOMrVTUbSO7tHhdc7lxX88f8AwdnfsbapDHpH7Qvh/TAYtKkZdQZIsnypHKk57AEqT7Cvwroooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooor6s/4JXf8EzfiH/wUI+M9rpUOnzW/hWxuAdUv9pHnEEEwofp1PboOen9Wv7Ev7Bnwy/ZY8BWPhbwh4fgtktoVQCOPHpX0paWiW8YRFAAqeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiignAyaaXPYUjNuUjHNfJf/AAVQ/ZT0P9qb9nrXfh7rGnRzpe2LRFXQHqa/j9/ak/Z88U/sx/GvWfhL4pt2VrG5Y2krD/WwFiFb68YPuK88oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooor1j9jf8AZG+I/wC2X8ZbD4U+ALCYrLIG1G+SIstvF3PpuOCB+fav6uP+CTv/AATi8CfsbfB3S/DWiaKkU0cIM0hjG5mKjJJ6kk19yWlskKBFGMCrAGOBRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRUZ68UVzPj/RF1nSpbV4wQy4xX8v8A/wAHNf7MrfDz41ab8UrGxKRzu1vcMq4GGJIJ/FcfjX5W0UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUVc8PeH9X8Va7aeG9BsnuLy+nWG2hjXJZmOBX9M/8Awb6f8E3/AA5+zx8I7DxHrfhiE6zfxpcXt3JF87yMnPJ/IDsABX666DpcFhapFDEqgAYAFaYAApaKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKCMjFR0VTv4g8ZVh25r8UP8Ag6Y+C8Xif9nDUPEdtp+6XT2juFZF5+Ri39K/nCooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooor7O/wCCJf7L83x8/ans9fvbIyWOiyoASuV81ufzA/8AQq/rM/Zj+HGn+C/A9jp1rAqCO3QYAx0WvXYF2gAVLRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRTG6mkpkkQYHPSvl7/goz+zH4c/aA+DWreGNY0+OZbi2YYZM/wALf41/IL+2v+zLr/7KPx+1j4YatbOtsk7S6bIykBoSeF+q9PpivJaKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKfbwTXU6WtvGXkkcLGijlmJwAK/oH/wCDeb9k+x+G/gDTtbv9KAvbvZPcSsvLOck1+5fgS0jtdLijRcAIAPyrpI+vHpT6KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKa4703pTGlArj/iZLZTaRNFcxhgVOQfpX84f/AAc4fCnwVaXtr470rREivoLyNfPj4JVvlIPqOf0r8dqKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK+xv+CVv/AAT68X/tL/EzT/GuueHbj+xLa4VrUyQnbMQfve4Hb8/Sv6bv2If2YdG+E/g2xsbXT0iMUSDAXHQV9Y6JarbQKgHAFakeAce1PoooooooooooooooooooooooooooooooooooooooooooooopA2W24paKKKKKKKKCM8GmMmPpVe4TCmvLfjpr8OiaBcXUkwUKhOSfY1/NX/wcS/tG2/jHxZb/AA9sNTWUyXStKiSchUGc/ngfjX5aUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUV7j+wF+yH4i/bB+POneBrKxlfS4J0k1SVUJBTcPkz79/b61/VL+xN+wb8P8A4E/DHRtH0fw5DCba2VfljA6Gvq/wzolrpUCwxRhQorprSRFGAauIcgYqWiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiijA64ooooooooooo61WvEYxkLXx3/wUz+Il/8ADX4Patr4uAiw27EsT7Gv5F/2rPjVrPx3+N2teNtVumkjN5JFaBmyBGrEZ/Hr+VecUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUqI8jiONCzMcKoGST6V/Qv/wbt/sK23w1+Hdl4v13SoTqF+BPcStGCSxIPX26fhX7c6Jo8NppcMKxgBUxgCraWoVhgYq1BEVI61owjgVLRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRUVw2FJr8yP+DiP4pf8IJ+yD4luY2KsLJsFV/2Xr+T/AK9aKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK2/hrpn9tfEPQtJ25Fxq9ujD2Mi5/Sv6y/wDglv4aj8PfDPS7a3jwq26Dp7CvvSwd/safT1qeHe0oBFaMEIAyRViMY5p1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFRTgMCDX51/8F6/g7dfFD9k7xHpVhZedI9m21cf7L1/JDe2dzp15Np97CY5oJWjmjbqrKcEH6EVFRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRXe/svaWda/aD8I6YFz5msxcfTJ/pX9cv/BPrwq2nfD7TQVx+4X+Qr7Bs7bFuoI7VPDbbZA2KvRDGBipKKKKKKKKKKKKKKa/WlUHHJpaKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKY6E5rxz9rD4T2vxJ+HWoaNcw71lgYbSPY1/In/AMFbP2RNV/Zh/aZ1Se20potJ1e6aWJguFSU8kfj1/A18q0UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUV9Uf8Edvgtc/Gf8AbT0OyWx8+HTUNxJxna2QF/TdX9df7OPw4tvCXhW0tFtwmyFRjHsK9gigCxgAU5YgDUqdaceBxSKSRzS0UUUUUUUUUUUxjk0+iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiimlwOgpVbd2paKKKKMj1FGR60gYZ60tNZscCsLxrAtzpMsT9Cpz+tfiv/wAFw/2LvA3xo8H6ldaheQW9xGGkhnKnKMBkEcV/O74z8MT+DPFV94WubyK4exuDE00Odr47jPNZlFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFfrh/wat/C7S/Evxk17xhe2AeWG5ECSEfwrGrY/NjX9NnhmwitLONI0wAo6Vtr0FLSpnOafRRRRRRRRRRRR0pjMTSVJRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRSMMjAplKrbe1O3L60tGR6ims/8AdppJPWiiiilAycVk+KoWm0+REPJWvzA/4KsfDDxPrHgnVXsLhhmJ8YX/AGTX8xPx38Pap4X+Leu6Rq4PnJfOxYjG4HkH+n4VyNFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFfvT/AMGlvw4RfAd/4yeDDXerXHzEdQuF/wDZa/oC06EJEoHpV3pRTkPanUUUUUUUUUUUUjdDTKVRk0+iiiiiiiiiiiiiiiiiiiiijAHQUUUUUUUUUUUUxxhqSiiiiiiiiilU4NVdTQPAVPpXzP8Atd/CzT/GHha9tbmJCHiYHd9DX8xH/Baf9l2y+DPxbi8baV5SpqFy8E6IwyTjcDj8/wA6+H6KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK/pm/wCDYj4Q6n4N/Zd0a/u7Xy2uYzM/Hd1DH+dfsVZoyooNWKcEJ604AAYFFFFFFFFFFFFFNdhjAptOTpTqKKKKKKKKCQOpoooooooooooJwM0DkZoooooooooooopGXI4pnSiiiiiiik+bfS0q/eFQXqloiB6V4h+0pFNbeGLuc9BEx/Q1/MP/AMF8viNp2vfFbT/CNtPmaC9kmkXP8IXb/Mivz0oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooq1oWmvrOt2ejpndd3UcIx6swX+tf1+/8ABF7wTB4P/Zr8P6eluqbbGPgLj/lmtfd0X9KkUZIp9FFFFFFFFFFFFFRnqaKen3aWiiiiiiimuxzgU0AnpUgGBiiiiiiiiiikboaVeg+lFFFFFFFFFFFFFIy55phGODSb1pQc8iiiiiiiio5yNuCa8Z/a0kW1+Heoz8fLayHn/cNfyC/8FYvE8/iT9s/xErzFktQsaAnoSST/AEr5rooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooors/wBnbw1P4v8Ajl4W8P20PmPPrMJCDvsO/wD9lr+wT/gmbps+ifBrR7GaPaUtIwR/wBa+u7Z8qKmBwc1JRRRRRRRRRRRRRTGOW4pKen3RS0UUUUUUUUUUUUEgdTRketFFFFFBxjmkUgjrS0UUUUUUUUUUUUU1xzmmbBnrQCM7fSlooooooqpqdwIIi+elfKf7e/xl0Xwp8OtS/tTUViQWz5Jb/ZNfyV/8FCvGXhbx3+1L4g1/wpfm4haQJLJtwN4Jzg556ivEqKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK+lP+CTHg2Lxp+2z4asp7USpbxTTYI4BAAH8zX9Z/7H2nx6R4MsbWOMKFhUAD/dFfRNlKCo5q2rBhkVIpyAaXIHU0ZHrRRkHoaKCQOpoooooopHOFplJn5sU9DxinUUUUUUUUUUUUU1wc5pFU5BIp9FFFFI/T8aZShyKcGB70tFFFFFFFFFFFBGRio6Yxw+RTxyM0UUUVHyTUlZniK3kmtHVGIJHUV+T3/BenSPGWifA3W9V0rXLmELaOfkI/uE+lfy/XFxNdTvdXMrPJI5eR2OSzE5JP40yiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiivvT/g338Iabr/7Xs2q6hPGptLJVjDdfm35/kK/p/8AgCbex0e3hhlUgIOn0r2vTrreo5rUt5M1YRgBg0jHJpKCSeppyHBxTqa4HXNOGMcUUUUUU1z2ptMBJbNSKcGn0UUUUUUUUUUUU1mOcA0K2eCadRRRRSMMjFNCE0FSBmkqQZxzRRRRRRRRRRRRTGGDTSmTmlooooqOnBx3qC7USqVPcV8b/wDBWL4E23xU+AGuaYbESs9hLgbc/wDLNq/j3+KngnUPhx8R9b8DanatBNpmpSwmNuoUN8v5qQfxrAooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooor7U/4IaeJZvDv7V8hjl2iWzXPPXG//Gv6aP2ZvFMl9o9szS5yg7+1fSfh6czQq2e1dBBnAqwhyOaWiigAk8VJTWVic0qggc0tFFBIHU0U1+v4U2jAznFFSUUUUUUUUUUUE45NNL+lNop6nIyaWiiiikIJHBoUMOppaKKKKKKKKKKKKKbJ2puR0zRRRRQTgZqJmxwKQSeopGIbtXA/Hrw9Z6/4NvLK6gDq9u4IP+6a/lD/AOC9X7N2mfCr9pe48deH9MaCLUZPLu9v3Seqt9e34ivgiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiivqv/gj7ex2v7WVrHJMq77NsZbGcf8A66/pc/ZL1LOj2u2TI2L39hX1x4PvCbdM+ldday71GKsoO9OoopyDjNOooopCwHWms2elJTkPakf71JRRUg5GaKKKKKKKQsB1o3j0NG8ehprNmkoop6jAxS0UUUUUUUUUUUUUUUUUUUU2TtUbfeFOoopGOBmmM3c1DIxz1phl9CakjbeKwPiNaibQp1x1ib+Vfzhf8HK+jixae5aAANdIAxX/AGhX42UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUV6/8AsJ+OR8P/ANpzw7rLyFFlkeBmB/vLn+a1/T3/AME/fEK+JvClhcrJu3RKc59hX3B4dX7PGoPGBXV6VMJMANWko+UUtFFPUYFLRTWfsKQOR1pWYEYFNooBIORQc55oooqReg+lFFFFFFFFFJtX0o2L6UjKoGabT1GBS0UUUUUUUUUUUUUUUUUUUUU1zzion+9QGI6Gng5GaKa57VG55xUEjZ/GonOOKntiMZrO8Yosmlyo3dD/ACr+fr/g6R8FSw/DNNetoeBqce847BkzX4UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUVb0HW9Q8N6za69pUuy5s51lhYjIDA5/Kv6GP+CD/AO3Rp3xb8C6dpd7JGt1AoinjwMqygAj86/Ynw/rKajCjxkcqOldh4fjIO4nrW7GQF59KSilUZIp9FNc84ptFFKGIGMUlORe5pHGDSUUVJRRRRRRRRRRRTGJJpVQ5yadRRRRRRRRRRRRRRRRRRRRRRUZPc1GeTmlVdxp/SimP96opB1FQycHNV5JNvJqS3uRiqPiiUSWTJnqtfkH/AMHH/wADrnx9+ynq9/Y2xaa1jmnjwP4lUEfyr+aOiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiv0S/4N8/i7/wAIr8ebrwbcXZVZZFmjUnjkYOPxH61/Tb8LNcW+sIWV85Qd69c8OylkyDW4p+UUtFKmM0+kLgdKYTk5ooooowT0FPQEDmmv96kooqSiiiiiiiiiiikCYOT+FLRRRRRRRRRRRRRRRRRRRRRRRUdNKA9DRtZTxTh7012I4FNYnBNRMWzgCkKDbyarXEY5qnNN5Pf61mapfG4QqDmvk3/gqB8K7fx/+zdrenz24cPZT8EZ/gr+Qz4seEpPAnxM17wfJHt/s7VZoVXHRQ52/piueooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooor6R/4JR+Irvw/+2b4dFtdNGtyGjcA/e5Uj+tf1ifs7m5uNEtXklY5iX+Qr6E8NxtHEN3pW7GcqKdRRQST1NFFFFFFPTGKUkDqaYxyc0lFFSDkZoooooooooooooooooooooooooooooooooooopjdT9aSiikZd3emEY4NMIwcUx8+tQTHrmszUEZgdpxWXHZylzuYnmvPf2qfC8etfCDUrF4g2+1lGMf7Nfx+/8FNPAJ+Hv7Z3jHShAUW4vftCjHHOV/8AZa8Dooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooor2z/gnfqKaX+174PuXfaDfFcn6V/WB+zn4+gi0W0j+0D/VL39hX0p4O8Uw38K7ZQePWuwtbkSIGBqdWzS0UUoPykUlFFFFAJHIooooprPg4qRGyMU6iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiimPjdTGfBwBSb2pytupaRxxmoXHOajkJzVW4Yis68lIBNV7OQyE5HesX4wacl94Fu7dgPmhfr9K/lG/4OBfhunhH9rX+3oIwFvTMjkDqQwI/rXwRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRXefsw+IV8K/tAeE9ceTasOsRAnP97K/wBa/pP+A3x1ji061UXgH7pP4vYV9efAP4tjXXES3YOCO9fRvh3U2ubdWL5yK3YJSwzmpd59BThkjJooooooqQAAYqM8HiiiiioZCetTRnABqSiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiioznPNR0DHejJHQ05GzwaccY5qMgHiopF/Sqd0QoNZl46kVDZMFY/WqXxDUT+Fp4gOTGw/Sv5vv+Djn9njxZr/jK28ZaBp7Tm1vZHeNE5ZSDkCvyGngntpmt7mF45EOHR1IKn0IPSmUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUVa0PUn0bW7PWIs7rS6jmXHqrBv6V+x3wN/aitJrC08vVkb90n3ZQewr70/Yc+PA1nVjELhm+dcc/Sv0c+GPiUanYRck5Udq9FscugNWQg706iiiiiinb/lz3ptIWAoVs8GlppcdqaQD1p6/dqRTkUtFFFAOeaKKKKKKKKKKKKKKKKKMZoooooooooooopjjBz61G33jShPWkIINKi9z+FOIzwaayY5FRuoIzWffqSpxWTdAjNRWp+Y896b4ithd6S0J7g/yr4X/bg/Y90T4yzhL/T45AZGPzgehr4B+M//AAQh+Hfj6aW5Gh28UrZxImFYfiK/M/8AbK/4JUfGL9mjVrq90OManpcbEhPMXzUGT7/N/P618pTQy28rQTxMjoxDowwQR2IptFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFep/s/wDx18WeEfE9los2pSSW8sixx735Q9h9K/cH/gljZeK9YFvq1zHmOYoytk89K/YH4LWM8OmQGVedor1uwx5Y+lWKKKKKKKKKKjJJOTQDjkUrMWpgZt+DUiYpWcCnRuCKfRRRRRRRRRRRRRRRRRRTWfsKTJ9TSbm9f1pVLE8Gn0UUUUUUUUUUU1+majON4p1BAIwaOlFIxAGM1GwypqpeJkHNZF7GcHFUYBIrH61JfBpLUrXn3jXwmNTky0ecH0rgtd+Gs8iny4B+VfKf7V/7G0/xJsbmCTTEk3qeq1+KX/BSD/gln8SPhX4kufHPgjw48kJG65tokI3cdR718J3lnd6fdSWV/bSQzRNtkilUqyn0INR0UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUVLY3k+nXsOoWxAkglWSMkZG5TkfqK/ev/gih+2B4d8bfD3RbKeO3S5jjWOZQBkODgj86/af4PeKLTVNHhmhK4KDpXqOn3SyIMHtV5HzTqKKKKVV3GlZQBkU2imuvcU2m7xnpS7x6Gk3jsKhmuNvU1JaTb0BzVtDkYpaKKKKKKKKKKKQuoo3rS5B6Giikb7ppmCegpdrelKE9adgDoKKKKQg5zmjeKUHPIoooooopH6fjUR4kpwIHUUUUEZHBqMjHBobofpVa4XcKoXMGQeKovDsJOKguJgqbTWRqFxFk5VfyrIvLm35/dr+Vcp4lk091YSW0Z+q185/tQfDzw5430ie0uNCtpd0ZGGhB7V+L3/BTD/gm9DdJc+M/BXh2O1vI2Zg8EON2Oxx1FfmVr+gav4Y1abRNcsXt7mBiskbjH4j1FU6KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK9c/Y8/ao8V/su/FKy8UabqM401rhP7Qt42Jwufvgeo/UV/Tv8A8Evv22vBfx4+GWmarpXiWK4MsEZysgPUV+gHhTU4L+0SWKUMCvat+JgRwalVs0tOVARkmjYPWmng9aVDzSv0xTaKRjgGmE4GajopDv6AUxod/UVJBGEGBVmI5/Kn0UUUUUUUUUU1yemOKbRTkzinUUUUUUUUUUUxhg4oDFaXzPanAg8iiiiikb7pqFvv5p9FFB4GajobofpUE2Mc+lVJyuDzWfdyIoPzCsi8uk3EbqzrmS3Y4LiqslrBL0YVga/o8LhsLXlnxJ0OySCRrkhRjuK+G/2+ZvAWm+AbyS91WJGCvkH6V/Pn+0xqujax8YtVudCuhNAsmzeo4yCc/wA64Giiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiivr7/glL/wAFEvE/7IPxVs/Detak58PaheIMvIcWzk/+gnP4H68f1M/sR/tH6H8Z/ANhrmmX6SrNbo2VbPVc19HWF+kqghhV5HB5FSjkZp69BQ+dvFMpVYDtQ7A4xSUUyQ889qjZi1RtndzSLIobFTpgjilIB6ik4UU+BgT+NTUUUUUUUUUU3Y2fvU6muBmkRcnJFPpCyjqaNynvS5HqKMg9DRRRRRRRSMuRmmUU9OlLRRRQ3Q/SoH+8af1pGbAoVsihuAaZQeRiql2+xSayr2+Cg81kXN95pKh6zL9JmUsHxWBftdJMMSnrViyu2UDe2awPF/jrS9EjZ7tlAHXJr5U/a5/bK8CeCdGuWlvIFKRnrJ7V+HH/AAUt/wCCkEnxDu7vwT4Mv97yMys0bkhAe5r8/wCSSSaRppXLM7EszHkk96bRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRX7nf8GzP7d+veIbGX4LeL9UkmudJby4XkfJeLYdp6+nH1Br97PAniD+1rOOZeQw612lqzEcirK/dFSL0FI7c4ptFFFB4GahlbAqAy+hNIzMf4TTdpB3Yp4uWQ4walSYt2pWc9+KdbOCTg9KsjkZooooooopu/0FKucc0tFGAOgoprOegptFOCAjJNKFA6ChmwODzTdzetKrEnBp1FFFFR0U5D2p1FFFDdD9Kgf71OT7tNf7xpM45zQZAerUUdKztUdVjJJ7Vy2t6gsKn5/wBaw7HVvtEpAbPzVo3Tn7JvxXF+JNXktpsAHrWS3im5T7sbH6V4j+0D4s1ySznW2sZn4ONq1+VH/BRKXx/qOnXot/DV6+Ub7sftX47+PNP1rT/Fd6muabNazPcMdk6FSRn9ax6KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK+tf+CL/7QEXwG/bV0aa/ujFaazE9tId2BvCsy/pur+tD9lrxtp3jHwZZalaShhJCpBBz/CK9ttwuBgVNS5I4BpKKKKKRjgGoJ8449KijUjr3qTavTFGwY6VGyAHkVNEFxwKbdcKdtQ6W0plcO3G7itJfuilooooooIyMUirtFLRRRRQQD1ppQ9jSbG9KVcr96kZsnjpSUUqkA80+iiiggkYFR0U5OtOoooobofpUD9aFbaMYpCe5NNZs8Cm0oJHSlaQbTxXP+J9QFvbs27oK898QavLKjBHqh4UNzJKS7fxmuykhLaeBjmuJ8TaTNPcjaP4vSorLwpLLjKj8qy/EPwlt9XVhPbBgf9mvFfjZ+xNoHji0lik0dG3LjlBXwf8AtI/8EO9C+IVxcTW/h2Hc+cHyK+Mvij/wbp/FqDUWk8G3ssEZY/uzCWH6niuB1D/g3r/auhz9j1OI4/v2R/o1db4B/wCDc/416hJG/i3WrkA/fSCEIP1ya67xf/wbi+IbW1DaJqOoxvsGSX3c49xXhfxo/wCCFn7R3w40ptV8PyPehN2Yp4ME4916flXyV8SPgF8XPhNfPY+OPBF7aeWxBlEJZDjvkdPxxXHUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUVpeDfE1/4M8V6d4r0yVkn0+8jnjKHB+VgSPxGR+Nf1gf8ABE/9pTSvjD8BtE1C21qGcvapyswb+Bfev0csJlljDBgatUUEgcmk3D1pcj1FAIPQ0E45NMZs81G5BNNCAHNCtuqQj5PwqGRec1JF6e1JP0I9qjsgFkJx3q8h4xTqKKKKKKKKKKKKKKKRhkUyiiipB7UUUUdKjJyc0UqDmn0UUUjnAqCRgGppc9qbTWfHT86b51L5w9qZLP8AIee1cb47uyLV8Hsa8+uJi3XNbPgu2Wc7sfxV3K6WpswCKxdT0JTKG296faWAhwNuKmMCEfdH5UDR4bvh41P1FRy+ANNuRuktozn1UVWl+EmhTHc+nwn6oKZ/wprw63/MMh/79ipE+D+gx/d0+H8EFRXvwi0WUYNhF/3yK5Txl+zt4b8QWLWlxpELAg8GMV8v/tB/8Envhd8U7S4F74VtnZwefJFfmt+15/wbn6PdSXWr+AdMmsbg7irWqkZPuOh/Gvyv/af/AGIPjb+y7r01j4v8M3ctijkLfpbMFA/2uOPr0+leOUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUV+kP/AAb5/t8+JPgP8d7f4Kazq7f2VqTtJYLJJwjnG5B/Mfj6V/U38IfG0XivQIL9JQ29AeDXdqQVBzTWYk8GjJ7mkJA6mk3ijcvrS5468Uxmzx2pKDwMimx96mHQU1kyeKUAAUkoyKjhXax471ajYnFSUUUUUUHOOKBnHNFFFFFFFFFIwBFMoopyZ/CnU0uewpN7etG4kYJpKKcg5zTqKKRjgZqJ5MdTUEko3UxpvemNMKa0pNNDEHNDygLVO7vCiHmuR8V3kTxOJH7VxOoXFsudj/pWx8PLkSMcH+M16VbLutgPaoLnTmlOdtV3sHQfdqNrSXH3c0sUEyfdFWYTcA/MOKtxMcfNTju7AU9Aw60/yww+YU4WcJ+8v6UNpdhIpV4wc+1Zmp+BPDupgrc2MbA9coK+dv2oP+Cd/wAIPjpolzp2r+FLWYzIQd9up7H2r8df27/+DZ6S1+3eJfgzp4sZyXkRLcEKSeeVxg1+UPx4/YW/aU/Z51y50jxx8Or147djm7s4WdCM9cYyPyryKWKWCRoZ42R1OGR1wQfQim0UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUVu/DLx/rfwr+IGkfETw5KVvNIvkuIecbtp5X6EZH41/Vp/wRy/4KMeD/wBqL4R6XqFjqcZmNuoli3fMrcAgjqCD2r9GLDUY7q2SVCCGFWg6kZzSF/SopJsd6iNwD3zSpMc9alVwRyaRmzTlbPBNI7dhSRsCcCpwcjNFFNZgeBSJ96pYzg1NRRRRRRRRRRRQTjk03zB6UoYHvS0UEZGKYUI5pPwoHWnhge9DOB0plFFFHWpAMcCiiimyHAqpJJkkA1C8ZPzAmoJWKnBNICx6GkLleSTTGuQO9Q3F8qpnNYuq63HErZcV5/418TIsbgSfrXLRXb6h0c8+9dj8O4HsxlieWzzXp+k3KyxKue1asdurpnHaobi1Az8tVmgA7UiwqOwpwRegFKIc1IkeP8afhVGaUEEZFSU3a2eGp6nBziniNJDyo/Ks/XvC+na3btBc2iMGGDla+e/jx/wT0+E3xcgnfWPDMEjyqQSYh/hX5u/tlf8ABuX8H/G9zNrmgeGxBONxDwLtP5ivyw/bN/4I4eN/2eornU/DhumigDERTAsCB7nmvhqeCa2ne2uIykkblXRhypBwRTaKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK+i/+CcX7e/xC/Yd+Ndh4j0fVpjoN3dRpqtmZSFRSw/eDsMd/b6V/Vn+x5+3F4U+Nvws0TxRZ6rE4vbRZARID1NfSGieNLHUrcSxXCkEdQ1asWpwTDiUH8aSW5RujVH5memKWOUhuanWcAdaXz/Q0om9abJMwpsM53c+tW4pc96njxTHOFpqgE4NPAA6ClQjdgGpxyM0UUUUUUUUUUUUm1euKXAHQUUUUj7ugFMp2wY5NNooooooqQEkciiimySbBVWe6bB2iqgklDZZcU5pxt681UuJGJyozURuSnWo5L3PeoJrkjoaz9SvnSIkVxHibX5o5PLA6n1rAurU6oDvXr61v+GfCVrsXcg6DtXSSaTDpsYaFQOOwp/hvxDK2qm0YHAHrXf6fKHiyT2qR0VuDUUlutR/ZxnpSi2HpThCooMI7CmmP6ikVAKdg4ziilCk9KeuQKcr5ODSvGsi4as7VvDen6lbulxArBh3FfIn7df7J3hTx94LvkOlxM7RNj939a/lF/b++Cdz8Cv2mde8KtZtDBPObi3BXAwSQQPxGfxrxaiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiv0U/wCCTn/BR/xX8MrXTPhHrPieVI9Pby7USv1iLkgD6Zx+Ffup+zp+18Nd8FRazda2GQKuWLDuK9Otf28Ph5o7rDqviK3QkgfNKBzXofhD9q/4feJUV7TW7d93TEoNeh6D480fXEWSzuEcEcEGtwXCMgde4pv2ghuDUqT56mpklB60SSqoxUQu0U1NBeLvAzV6GdWHWnMwPApoODmlkkAHWoorxPO2A1ejcMBTqKKKKKKKQuo70hkPYUBx3FLvX1oDA9DS0EE9DSYb+9+lLRRTGY5xmkoooopyp3NOooprSKvU1WurhQpwahjkVuTRPtK8Cs6VJfO4fj0p6phTu9KzdUn8lSelUY78N1anS3akcms7VJ1aEiuF8RQST3a7c/eq/o2iPIoyK63R9NMAAxVvVbVniwB2rD0awlg1tpSTjFegaTOREFJ7VoxncQaV0/KmeX6ml2L6UuB6Um1T2pjAZIpFXHWlyDxmmlDnilUYGKWk3qO9Ksw708yKYyMVx3xB8Jx+JNOltHTIZSOlfzx/8HE3/BM/xh/ab/HLwNpT3EunkmeGOLl4iMsBjvxn8K/F50eNyjqVZTggjBBpKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK0vCXiS98I+I7TxFYORJayhxg9R3FfqF+yf/wUNjHwrXR59WIOEBBf2NdJr/7QOm+M7lZ5dXjP7wNzJ6HNetfCP9rnR/B8cSNrsYC4/wCWtfeP7I37bvh/xFplsp1uNtyj/lpX2X4L+MOmeIrSI296rZUdGrtbLUluYhIHz+NWVugOAf0qxDck0lxcMexqp5zFj8pqSOZozuwasRa15ZCnPWtK1vhMAashge9R3b7U/CsT7ayamEIOMda37KcOgyauKciloooooophQ54o2NSiP1NLsHqaAgFIXwcYo3+1OooopCqnqKAoHQUMoNNCk07YtLgDoKKKKCcDNVLt9uBUBjEn400oIulIJN/BoaBcZqtcN5YOKyNSj84EE1SSxUc027g8tcgVkXsshJTaazJdME86sy966DRtPjjAHFa8cYQcU2+ZiuAvasuDet4WKmug028wADW1a3AYDmrHmFhwaSigkDqaY0nFJnPNO2HsaTyvYUvljuaRl2nrTWGRTOtRn5T16Ugn+bb61Olsk33gOa8M/a6/Zy8PfGDwRfaLqenxyiaFlIZQf4SP61/MJ/wV4/4JUeMP2aPH2pfEnwFoUr6PPO0l7aRRH93nkuoH6j8evX4DooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooorS0Lxd4h8N5XR9TkhVjlkB4JrqNI+P3jzTwUl1IsNpwRn/Gm3P7Q3xQmY+VrzRA9Nuf8AGvYv2Zf+CjvxM+Dd3Dba1q0ssEZAEi5PHuK/WH/gnH/wWH8JfEnU49D1TxGvmpIqFXlwe3Y1+tvwb+O/hrxl4eiu7O/R96rghwa9L03Vor8B4nyDW1ZzJgbjU8jRN2qLy0zkCkZV2niqVzJsYfWr1hfbQOa1ba58wdamnG5PwrLmsj9o80DpVm3ujCQC3ete3mDKCDUwOeRRRRRRRRRRRRRRRRRRRRRQAB0oooopGOBmopJtvBNVLiYMaI5F4pszqelQK4U/jTjcrtwDVa4kVxWdesO1Vo5EHWm3VxARgnPFZkxtncgCmfZAzBlWrEM32fGTV+0ulk71aZUkFQNaIp37aRJTFIBnvWtZXnA5rQhnDd6m3j0oZwRgUwuB05oBDClpyBh16U6kY4HFMY4GaYWJ6mml17VHISFzVVpCJRz3rStJAQKr6rp8d/E0TrkEdK+Tf2/P2PvCnxg+H+o2eoaLHN5ls/VB/dr+U/8A4KP/ALLEv7LX7Quo+GrOzeLTryZ5LVWXhGB+ZR7cg/nXz9RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRWz4C8e+Jvhv4lt/FXhTUpLa6t3DAo5AcA9DjtX61f8EwP+Cy13ealY/D3xfdyxXY2hlkJIOOMg+lfuP+zP8AHbTfiHoNvfQXiN5kQP3vavbtN1KK5AKyg/Q1oiQA8nP409ZfeiST5Kzb2Q5yPWoRqIhHLVuaDfC4jVg3attPmUe9JJbhl6VSubM7wR2NXLSTywBnpV+GTcM+tSUUUUUUUUUUUUUUUUUUUUhZRxmjetAYHoaWikc4FZ9y+Ztue1M+zhxkn9ajlPk85qLzw/emzHAzntVSW52t1qGS9GOtVLm53Z5qlNPjkGqN1O3941WtGaW5xk/jXQWVkrREn0qnqNnsB/xpLJ/LA5rSgugwHNTvIDHnNUpm/eDB71btJSAK2bHLKDVxvkH4VEZsttJpyqWp4AAwKcnXpTiQOTTfMHYUjMWqORv0qJ3/APrUwMc5zTnXcKrtb5cNVmA7B1q1GAw6VgfEXR49T0SaBog26Jhgj2r+eP8A4OSv2Rby702X4laLoztNptw05aOEnKj7w49ia/EyiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiivTP2Xb7WvDvxDg8SadEQsRA35x3r9mf2J/wDgoBrfhHTrTTr+9VQFVTmb2xX6M/A/9tXSPE1rC1zqqZYDI319F+Dfijp/iWJJLa7Dhhxg121rdrIivngirDSp5XWsy/mUA4Paue1jUZIgdn863PA2qNLbIZDzj1rtrW4V0HParSncM0jRI3UUx48HAp0c7xcEVPBdiTgkVOCD0NLRRRRRRRRRRRRRRRRQc44pmG9DSUVIDkZprtt6VWubsqDjrWVJeSNdnPT1q7DMCnJ7VWvX3A4qqshTrTbi6UDrWfPdLuPNV5LhT3qCSYHvUDtuqExBzz+dOht4o5N9X4b+OJNm+op5PtH3eaiVTH1p32xY+9A1TJ27qckzSuMdzWtYxZAzWzZAKoqxM3y49qqKzGb8KuwgEc1JgegopHIximUhYDvUTsMcmonIJ4pFB6VJQVB5xSMdo4FW7XkCmalbpcQlGHUV8n/8FCf2WvC/xn+FGqaZqmmJKZbaQcxg9RX8lP7eH7Olz+zN+0brngJbdksWunmsNy4AQscqPof0Irxqiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiin28fnXCQ4+84H5mvp74LeAIY/Cy3kNsFI28hfau5stX1zw9cRtbanNHtcfdbHevffg3+1brvhNYlm8STgLjrLX6F/sZf8FCdBGmWkGs68jttXJklr7x+GH7V3gzxxaxR6bqULtgA7XBr1Sw8Rw39l9pjcFTWdqniOGIHLj865nWPFEDA/MK3PAOtJNAhVhjFejaVeFkGTWvDOCvBqQOT0NNe5VByRTNwn+7QsDw/PuPNOj1JI38t3/M1cjvYn6OPzqUMGGRS0UUUUUUUUUUUUUUUU1nBGAKbShyOKZK3B55qhdI2CcmsyZwkxNSR3ZAxupTOG681BcOO1Z127DPzGs2edg5yxqFrk560eaW6GlGWHJpeEHNRyXA27R1qq5keQbXPX1rTsFbgsc/WnXgxnFZV5K0WfmqhFqmJym6trTbwMV6HNdLpuHUYrSifZxT3nBHWmRHMnSr0I4zT6aX9KazAck0xpB06VGz/lUTMTRTg6gdKUMDTwwxgio5GA4qxbSjHWp3IcYrmviL4ah1rw7PayRZDRkYxX82P/By5+yg3hzxLB8U9J0za1tcOZ3VOsZbBz+h/CvyBooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooopUZkcOpwQcg17F8NfjVf6d4cNgJW3KQCA1Xb34r67eyr5ccjAsO9dv4I8W3V3s+1ZXOM5Ndbd/tDeKPhwD/wAI/BLL5f3fLavQf2bP+Ctnxo8Ea+0V3oF6YllG0mUYx+dfoR8BP+C2ut67ZwaPqmlzRu4GS0y/419S/Df9tuH4gW6TS3OzeucF67/Tvi1Z6tgm9Xn3r1L4Z+LIHgj2XAPA6GvXNA15ZY1+ft6101jqAkUfNWjDIGX8Khum4NRQ3nlCphqIlG3NRziLaZd3NYupeKm0ydVCkgsBwa6DSPEcF3ECzgHHrWtFPHKMqwP0p9FFFFFFIWYHhaUEkciiiiiiikYgCmUUVHMQuazb25Kg1iXV2TORTo5ieTUqyEUrDcOTVW9iXacGsO+DK5IrNmumR8Z71Nb3BYDNX7Vd9WJbdSv4VTltxngVGYsHIFTxTmKn+cJfvGqWqRpsJyK52T5LskVqaXclZVX3rtdFkygIq9LOU5zUK3Zc1YtpTuzitCGY7af5gbqaa0mOlMaT/JphcfWmkk9aSkLAdaaZR2xQJOeopwm4prMWqSKYrVu3k3ik1WITWjIRnIr82P8AgtV+ynp3xl+COuCXTlldbOTblM9TX8pvjHw5d+D/ABZqXha+Rll0+9lt3DDn5WIz+IGazaKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKnsr+4sJN8DdeoPQ10uh/EuLTyBe6QHA7q9dr4X+Kml6hIIrZPLb+6TyK9D8P31hqm37bGHz1ya6Sbwvoktur6XYqjkclaPCej+NtI8RxX1nqEiRL2Ar6x+B3x613wvHFFfas3AAOTX0/8NP2nfOWPzdSz06tX1l8APjfb6rbQEXYOQP4q+n/BXjiG4gjYSjkDvXo3h7XknKgP+tdbYXHmRgg9qLiQd6zby42A4NUodRkEhBfvVmXUGNuctXK+I7tnJIbnPFc5feKdfsc/Yr0rjpxXf/Dfxtc3WmxLqd0Gfb8xIxXdWeowXKgxuDVoEEZFFFFGR60gYHgGlooooooJA5NNL+gppOeTRRSM20VWupQAeaxdRuwM8/rWDNfx/acZq1b3KMMVZWdTQ06CoLm5RhgelZWoYIJArA1CQLKB71NZyZxzW1pwyAKuTgBfwqmxDy7RUq6e8i5HpVa5tJI6hBZeM1W1KUlOv61gTOBcE1a0+6VZ0B9a7rQLlWRau3Umc4NQWwYnBPetG3AAFW45MDrT/OFMeYHoaj8zPUUu8U0sSetODAjk1FNJjvUAlOeTTxJx0oEuDj+tOBLY5qQZ7dat2eQOTVm4w0JB7ivFv2qPBVp4p+HGq2dxbBw9uRgiv49f+Cmnw3j+GP7ZPi3RYbYxJcXX2lVxx8xK8f8AfNeBUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUVe8OStFrMLKDktjivoj4Y6et+I/O4zjO6vZbDw1p1hZRz+fGCVz96i58QW2nxmOO4Xj0NZM/xAuYrpFiLn94On1r3T4MeJJ78Rb93OOtffX7JEQuLO1LN2FfaHhm4XSdOhlVuqA8V2Pg74mbdVSzZz0r2nwv4iju7YNv6rWlLeCQferM1KcKDzWQt+qynDd6lk1HMON3WsTVp0kBJYfia5jWLmFAcyr+db3gZEuYUZWByOxr0zw2v2WMADrXRQXIYcGp1bcKWms3YU2lQDNPooooppf0ppJPU0UUYPpRUF1cLGpJasLWNdS3QndXEa145CM4yetYEHjRbnUvLEhrrNHvfPi3Z7VeF1s4zQbkv61HO5Ws+9usIQTWBqE+6Uc96s2LnAre0x+BkVcvJMR9e1ZtvMWvMV0FigMP4VU1GPg4rMljI6Cqd1b+YOlZ1xpGWLbP0qKOwaOdTsPBrqNFuTCqg5rZhfzxViK2Cc4qwgwKeH9RTWmIpvnFhn+tKrg09X7Gl3r60x5ttRSSlqjUk5yKWlX7wqeLtU8a5/GrVsuOlTSkeViuF+LsJn8JXyYzmI1/JN/wXp8OyaJ+2pPcvCVFzaPgkddsh/wAa+I6KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK1fBUaS+JbVJBkb+a+k/C+l3J2/2YMenFdRqOj+O/sa+U3y7eODXL3Gk+ORfjz2+Xvwa6Lw9YvHKjaiOQwJr3T4W+LNB0nyxI+MY7194fsffEbRLq0tfIm7D+Kvs6z8U20ujwGOT/lmO9LoHiPyNcSfzMAV7Z4H+I1rHCkb3A6etd5pXiy0uwCJQc+9N1rWYirbH/WubXVJPPYluM1Zk1XFufm5rntb1mZVYo/SvN/G3jS5tEc+djFelfs/602r6TbzO+dyivb7JQkKEdxV+0kbzMZrQjY7cinbmPekoopQxFKJB3FKHU96CyjvSM+eBTaKOO1OVcctQ7DHWs3VdVW0AG4cmsi71K6uQREw5rndci1F1IzXn3iu01BVdlPr2ridHk1ZfE2x2+XFey+EhKbQF+u2tOQMKltlz1p16qhMj0rDv25K5rHuomeQEetXLGFxjjpWvYlkxk1auZdyYJ7VVtAv2vpXQ2JHlde1Q3ihs4qhLbk9BUaWTE8innTlI5WoX0tc520qp5HtW1pHzgZ9K1hFx92kMY9KaylajYYNRt1OKRWYVKsnvTt61DLKtIjK3WnMFA4ptKn3qsRdPwqzGPSp0O3inSsdmM1zHjuwkvNBuYgPvIa/mR/4OX/g5JoPxQ03x5Ha423DRSPt/hYt/UCvypooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooorQ8LXH2XW4ZvRq+mvhN4yjHlblB6dVr2t/GNo+mRDyY/uf3BXK+JPFttDE0ogj49EFeaeJ/i9HY3AjXAy4HC11fgTxRPr+zy5XG70Jr9BP2C/Dl5c2NmzTSnhermv0GsNBlsdBtnLN/qh1Y1mSa6bG9ERc8V0Wh+MZEdCLphg/3q9M8IfEQRKga5P4mtzUvijDHndN+dZ1r8U7e4mKCQda14fGC3UXyv1qvfXv2iB2B/hJrwn42+KxpMEzGTGAe9eu/sa+LU1bwxZyeaDmNa+p9LYT26EHtWnb2wU7qtoQBiguO1ICxOMmngYooooooooooZ+PmNV7i7RVIzXPa7C19IuGPDdqn07TFVRuH5mmarpsRQliB9a4XxdYWqxufNT8WFedWEMDeKzEroeOxFet+F9NH2QEA/dq9NYYzxURXye3SoLmcyLgA1m3VoXO7FUZrcq4+WrNqm3jH6VaWUJ0pWn3jGaW2UibdW1Zz7UxSyNvpgj9TShVHalpGA2niqV1HmtXRIsItbSocDkdKGUgc1FIAMiq87he9VpLkJ3psd3vOM1MHG3NMaYDvUbNv6H9adG2OKk3j0pVbccVLGoNTxrVmEVITt61G0wzgVS1za+mSjH8Pev5/v+DovRoZPh810Il3R3cLBgOR+9r8KaKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKsaXcRWuoQ3E+diuC2B2r3f4d+KPDQ8v7Pe56dq9asPEFleWiLHNkbeKi120E+nPKBxXjXjezgXUE8w/8th/OvavgNY6Iyw+dIB07V+m37DK+HrewsxFOOFXtX3HqF7pieHLfZKP9V6V5V4p1q2h1EtHJ61mxeNvImVVl/i9a9E8FeLWuFTMn610Wpald3IPkjOfeq2jnU4bgvNHgFs5zXYaTrUccYWWTBrWOuWn2OTMw+4a+ZP2ntdkNpci2bJwcc13v7C3j17Lw9ZQXcu0iNcjNfdXgPxRaalaR7JweB3rtbeZGiyDSmYg8U5ZFPU0/fGORSq4PBNOooooo49f0oyvrTJJMDCmmiVu9JJJkfhVSZSzZPSopPskalpGAxzWLrfj7wx4djaXUNVjiVepYjivlz9r/wD4KQfDH4L+Hbu8tfFNu80SEhfOA5/OvzG0r/gvP8QPif401DQtGt4XiivXijZbvqAcDtX1b+xT+0d8Svi34/juNbswsLxA5EpP9K/S3wHB5mkI8vUoP6Vo3trGAcVT+yRuOR1pkumwgdKqz6fH6fpVKfS4ychaiNksfRagmiIPAqOFDnBHertrGmetadvGpXAoeCUj5FqF47lBytMV5Bww/WnrKe5p5YFearzrnOK1tFQ7FBrXHQfSmTOAODWfdXhQ4Bqs88j1WnMvpSWpcHkVbeRlirOub2RZAo7n1qe3uC/3jUxnA6mlW5B71LFJk9aswuOOatQ4PerMeBSXDhRxWdLd4kIz+tU9dvnXSJ2B/gr8Ev8Ag5ga41D4b3pIyEdWPPo+a/CSiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiir2havdaTfJLDOyqWG4A17t8PvFckltCzzk5A6mvRr/xPbQeF5J3AOMZJ+hr54+JHxKE2rGCyhVikmWPpzXc/Bn4zR+ZHC0gRgQCCelfpF+wz8Wg9pZr9q7L/ABV97N8Q/tHhy2xcdYR3rhdc16S8vDtlJ/GqkFteXM6FZW+8O9er/DzTrpVjzI1d+mqQ6Vzc4OOuah1D4m6NFH5aLGCBg4rGHxMt7i9EUMwGfQ10Gnarc6lbMI5z8y9jXB/EP4Tah4rSRRJIdwPQVneCdCv/AIVRJHJcOojx1r2H4Yftp+FvBzeRr+tRIFbnzJQK9v8Ah5+358E/F2oR6DY+MLFrphxELlc/lmva9A8Y6br9utxZTq6sMgqc1pqzy/dYj6U2R5IfvOfxNFrqUbNtLdKvJcowzkfnTxKppQynvQXA6UwknqaY2/1P4U0xSschzTlhbuxNDjZ1qlf6xb2EZkncADqTXAeO/wBpj4beBYXbW/EFrCUBJEk6j+Zr5T/aU/4LO/s0/CDS7przx7pyvGjcfa1zn86/Gr/gpF/wcK+LfiiL3wr+z74muY/N3IL63kxGgJ6g9/wr82vH/wC1L+0F8UDJ/wAJx8VtXvlk+8j3OB+mK9U/4JpeB9b8f/Gk6fZ3cwTehdVOdzEnJPvX9JX7AP7Ncvg/RrLV7hXLGFclh7V96+FYPslgsRHRauXMRk6VWMJj5qN3UjFQyAEZxVeYKM5FUbmVEzkVQuL6NeoFQwXkcpwoHXtV+0jJbdWnacYBrQtwh6jNRXzRoD8orN81ZWIAHWnC1YjIzR9mYf8A66Qw7eorU0z5UHHWtB3wv0qrdXIC9ayLy5JkHzd6ltnDU6UKe1RKwj6iiW7QptFULld77h60JN5XU0rXBfoafA7ZyWq5A571bgk5HNX7c5FTecF5NVr28UDGayJbzMx5qtrtz/xJp+f4K/Dr/g4l0g6v8LNYCLkiByOPrX4F0UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUVveHvHWoaKFjLsVXoQa6fUfjNLdeHnsknYu2MLz7157PNJczNPK2Wc5Jq74a1eTRtUS5ViFJAavrn9mr9pY+Dlt1N9t2AfxV9e6F+3xDcaXBbHVx8qY+/WrY/thw3kwkGpg/wDA66fR/wBrJQodb/OBn79a8H7fWp6CMQSSNj0cf412Hg39uaXxeEOo3Zi39Q7j/GvTfDnxb8L64qvNr0OW65auqPiLwfbacdRi1y3LDpg1w3iv9qn/AIRCQx2F2ZAGx8jVjr+3RfL96Rx/wMf41m6z+1XeeKQQJWO7/aryr4v/ABOvraza6j3ZZSc5r5g1z9urW/gH4y/4TMGVRBkDD9efrXsnwq/4OqPFPw7ntdOvfh/qV3aq6rLMrJwvQnBbPSv0j/Yx/wCDib9k/wDaGtbe31T4jWGl3sijzLS/m8uRCexU8ivsjw7+2x8DPGiK2ifEvSpw/Ty7oGtq6+PPw90+EXTeLrIBhkHzhWSn7Yvwpt777HL42sAf+u4rpNJ/af8AhZfKCnjaw6f8/ArXtv2gPhlKMjxrp/P/AE8CtG2+MPgG7A8jxdYtn0uBUtx8UvBNuu+bxPZgY6mcVmXXx5+GNo22fxxpy/71yKp3H7THwetELS/EXSlx63a1zmvftyfs/wCgqzXfxQ0cbev+mLXk3xN/4K3/ALNXg2CRh8R9MlKg8JdKa+VPjV/wX6+CsEdxaaZ4nt/lyAwnH+Nfnn+2t/wWZ8PeLdOuptA8TJNNIGVIopck8V+XXxm+OvjX40a/LqviLUJPJaQmO33kge59TXE1oeGfDt74o1aPSbFlVnPLsDhR+Ffql/wRs/ZRs/DesJr29bm5lnDPIF5+lfvr8BbDUNF8L2sX2VgFRR+gr2PR9fmjjCujDjvWjHrwb7zY+tWI72GfrIOakK25GRItRXAgVM7xWJqmoJBkBx+dc5quvOgJXNQ2N7Hd481wM+tbGn21jkETLWptt4YdyyCs+715bR8B+/rRF4zRMbn/AFq5b63bX4+adefU1bhjtBysqmrKeWRgMDT/ACAwqKWBR1qzZAKAM1YuZNq8elZd3cuTgCs+fe752mpIrgx8GrEc4k5JpJxxkVUYOXI21IIlKZNU7sbelRxuw7VYhdqtwOauwdRWhbsOtE8h7VmalOyqeKxEvHe7KEHirmpwGXRpvl6pX40f8F9dAuJvhbrDRQE/6O/T8a/nfoooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooq1a63q1lj7LfyJjpg1saP8S/GllcJHHrcpDMB81e5fDwfEfVdMXU11WQpx/DXeaT4k8X6YAlzqLE9Ola9tr+v3n3r0nNJd/EfxL4Zz5Opsm2tLwL+1F42N6bdPELDa2MZr2bQf2g/Hl5pIEuvsVPUVS1f4s6vdKz3moFsc8muE8UfH1tK3b77GP9qtX4c/tRaUwj+13gb1+euw8e/Hbw74j0hILaQFvLxw9fF/7aRmuNDtdQhY+U+oAPjv8jH+dfOlKrMjB0Yhgcgg8g12fgj9oz48fDi5W68EfF3xBp7JjYsWpyFB/wABYlf0r1LUP+CqH7cepaVFpNx8bL0JFGEEiIA5HqT0z+FcdeftwftaX92b25+PGvGQ/wAS3Cr/ACFTW/7eX7YlqNtv+0N4kQf7N2P8Kc37fH7Zrf8ANyPiof7upEfyrU0f/gpT+3hoOBpf7UPimPb03Xav/wChKa0tW/4Kq/8ABQnWoVt779qbxJsVduI3iXP4hK5LV/25f2wtdcyap+0h4ukLdSusSJ/6CRWDe/tNftHaixa9+PfjKTPUHxNdAfkJKy7v4yfF7UARf/FXxJPnr52uXDfzesy68YeLb7P23xTqM2evm30jfzNUJZ5523TzO59XYmm0UV6N+z5d6OniBbe5twZi4O4nqK/bH/gjnFpaRRtcwg5nG2v2c8APpa+GYTFCB8g/lWnPfQoPkwKoXOryIPkfFLba5ekDbPVv+37yMfPNTJfFbMvl+bVC6uri8bCydagfw/fXg4c8+1Rnwnq0f+rmI/CrOn6JrkB+e4PX0rUNnqRg2mU/lWXqOh6nKCwlP5VzesaZrcGSlwR6cU7SW16MDNyfyrpdKvNUUDz5ya6HS793YK7ZrftXV4iT6VVvZQoOKdZz5A5qzcSZX8Kz5vv81GxiAwVFV5l3fcoikMf3jU6TrL3pzxqE3gVWnmCHGarSMr5yKRdo4IqVGUcGp4JBuq/A44NW4ZQO9K8gPeqOorvUgCse1tGN8WxxW1PZ7tLlTHVa/Mr/AILK/Bi88bfDDVYraEktbt/Dn1r+X7xjoNx4X8V6j4euoyklneyRFT7MQP0xWbRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRUlqwS5jdiAA4JJ+tfQvwy+Nlvo/hxdKW8XtwGHpW4/wAQjqrh0cnnPFa2leNZIcfMeKXV7qPxFnzJB83qaTwZ4CsbW+NwJ4/mbP3xXsXh60toNNEAmTt/FUl7okVzC+GB+U968l+JPgSC58zLqM5/irD8H/Duwh2eZdRr9ZBXpOh+CdFVEzqUHT/nsK87/bd0DTNL+EdlPbXULOdVQAI4JPytXyfRRRRRRRRRRRRRRRRXtX7FPwqHxI+IaiSPcscioB79a/dT9gX4JQ/DDTbSaCDbuCtxX6L+A/Gxg0OK3LHgDr9K6FPFCzqT5nbuao33iXbnDE1Z0nXvNAyxrQvdQDxDB7dqxZr6WOYuFb8KmtvFUtuwUq35Vu6Z44IxkN+VSXvxHS3zkNx7Vnr8WU3EbX6+lXNN+JQvp/K2MP8AgNdJaX63kBcsOlYmvyRBWJcVSsGiOMMPzrTjC4yGFXtHUtc4rrLGD9z+FU9TgwCcUljHwM1bmQbfwqnOvNVZFweKRcDqRSNCJKI4BD7U6a8Cx4yKy7u8y/XvSRybutK02yn28xkODV6CMdatwkLViOQDv0pst2qfxVUuL9X43Co9PZXuTyPzrdCK1my+q18yftnfDW28Y+Eb20liVt0TcH6Gv5Ov+Cj/AMLm+FX7VviHR0t/LiuZBOnHBJJB/kPzrwiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiipLWS6jlDWjOGzxsr1X4aa1JDbqNWfnbXYJrFvJ/qHqK61u8hz5T4qz4Y8T629yQkv8AF616h4V1jXpIlLvx3612+lahdNbMJm52GuD+IEGpXG/7PXi/jXxJ4p8Ob/Jl27frXF2Hx58cQXRQ3vG7j5jUfxP+JXiDxpoVnp2rXG+OO4MijJ+9tx/ImuHoooooooooooooooor7Q/4JGeGotZ8cs7x5JvF7fSv3x+DXg2LTNAsSkWP3CdvavaNGaWCzVI+CKurdaqD+7bipFubn/luf1rY0dppADHW7EJo1BuDxipDd6Uw8sn5qjexgnO6JaBaNHwoqlf2kr5wKp2mkSs/K9/StnTtL+ykSla2E1+OytmVpMYX1rh/G/xGt7RHJuAMe9QeF/iFb3gUicHPvXdaJrcV6ow+fxrrNCCbw5H411VlNEIcZHSq1/skBApltHjpUs2QKpTN8xFRvGxGcVUnZo+lPtpCetLeyBF4Pase6vJDIVBqs8js/JqaGQjGal4cYFSW6lTkVdjkKjrUguwo5NNa/YD5WrO1DVpIwcvWaNddjjfV7SNVZp/vV1EN9utGJbtXmHxgtE1LTZ4nXIKGv5g/+C/Xw9s/Df7RFt4gt4SrTs8TH1yN39K+AaKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKt6drN7paslsI8MckPED+vWvUPg/4Tl+JIyhKsudwQ46V7D4f/Z2kON8zD6y//Xrak/ZsEvSX/wAi1a0H9nP+zpvNLd8/fruNL+HKabahOOPerD6PHbDYZQP+BVQu/DEF5nJQ5968r+LPwej1US7Nozno1ePWf7NlzPfOGkYrv4G+oPi/8D7rwV4Mi1+MMRHcBZMtn5SP8cV5VRRRRRRRRRRRRRRRRX6Af8EdtH/sbV4dZn25nuQ4ye2eP0r93/hHr8Gp6FZRpt4gUcD2r1/Q9FE9uslbcOiIsRJA6Vha6EswxyOK2fBlxHMiZKn6muq1CzS6gAVgPl7Gsey8HNdanuMzY/367bRvAdsIMtJ27vUlz4Otos4kH/fVUJ/C0H98f99Ull4Xh3ZyOvrV+fwxF9mwCPzrlfEfhfMTqspGfR68h+I3w9mvI5AtzJznpKf8ao+EvB0+mqg+0Oceshr1HwUkluFVnPB7mvSdDutyKua6SyJePhqm8kv1Oas21rwOKdd2uFrJmG2UjHSlBBU+9U7tN3SoFk8moL/URtxmseW7Ekx4qSNsipUHFTRHP5VYRgKfJOFTNU5dR2yBd3WrFu5m7msvXI2CnGa53zGjYncetaGh3x+04zXZWdwTZsc9q4nx/Pm2l3D+E1/PJ/wcT/Dma91NfFsFuSbO7VyQOg5B/QmvycooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooorvPgz8VrH4dSz/b1nw6tsMKA846dRV7xJ+0v411CZhod3JbxnoXPzfkDVDT/wBo74p2LDdrzSgdmJz/ADrqvDv7Xniq0kUau0pHdkbNd5b/ALXukXGiFjqxWX+65wa4LxV+1X4innxpU7OM9d/FULf9qrxhH/rPMP0kqlrX7SPizVM7C4z/AHnrO0n43+JLK5M1yzMCc/I3P61d+Inxqbxr4OXw+Gm3mZWcOOMCvO6KKKKKKKKKKKKKKKK+nv8AgnL8Yrnwb44TQ57srGJlaPLdAT/jX7s/sn/EuXxRpFl9im8w+Wo619h+GoPELaIk6WxPHHPtUOqap4qtUZFtD/31XGeI7/xpcBgtkf8Avqsyz8V/ELSABDpxOOnz/wD1q07T4tfEdyEl0wgD/pp/9aq3jT41fEvw7oL6lpOlGWZQcJ5uP6V8eftBf8FXv28fhjqosPBfwZF9EZNpc6iV4/74Nefwf8Fjf+Cimo4+1fA4R5641I//ABuvXvhH/wAFLP2rvEixHxZ4ANsWxu/00nH/AI7XumhftsfE2WFHk0c7ioyPP7/lXRW37ZPxGuIQs2j7Qep8/wD+tTz+094p1P8AdS2+GbgDze9RTeJviZ4pX/QdLLhun7w/4V2vgTwn8RbhEN9pe31y/wD9avUfDvhPX7RVNxa49ea7LR7O6hwJI8GuisWkVcEVeilHc1dtZIyM7qluSrrgVlXVqxcuF4qrJuQ7TQsIk6iqOow+WCQKxpyzEgiq4thv3GpUCKOaa0qr3p8VwD0NTLcY70k1wSmKoy72lBA71o2LOAKg1JBJnNYtxaR5OKfotsPtnArsrK3Y2hG3tXK+MtJluIJAEzwa/HH/AILifCK217wNqzXlvwYm52+xr8BbiE287wMclHKk/Q4plFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFe2fsj/AAZ8YeJfGNvr1qJreIMAhVcFhnrX7tf8Ewfh7rVjptsmqXMku1lHz1+ovhTQ7aHwzErW652jt7Vj+IrGyifm3Xr6Vzt5FpgJ3WqH8KzbmLSWz/ocf5VBFpmnXDfJaJ19Kde+CbO/tzHJaKwPbFcd4h/Z58J6y/mXfhu3kOc5aOuevf2ZvBcWdvha2H/bOuY8Q/BTQ9JDG00aKPHTalZfh3wAJ5yiwYw2Oldl/wAKod9ODrGQfpWJB8LNQXxBbfvH2+cMjFfUnwf+Hdnb2cRns1Y4GSwr1bTfD9hagBbRBj2q/JZWoXCwL+VVxZxiT5UFTpaYXIHSql5c/ZwST0pbXVgcfPWlZ3YuBndmrctsGi3YrIv4tkox60tulQX9p5oIxWNcaWyEn3qlLCUbFROjetVponPQmnQROOrGp2DAcGkUs525qaOz3c4q1Enl9qp6g3Uqazo7drgnnvWjo2jslxvauss7fZbkbe1ZOuRxiJ90YPBr8h/+C8HxA0Twd8L9YnuoIvlgf73+6a/nKup2urmS5dQDI5YgdBk5plFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFKql2CqOTXT+E/Ck9xIshiLE+1fdP7Fvhm4gitM25H3e1frl+w3dTaPawDYR8wr788IeJGudDjQk9B/KrF5Yx36l3xXLeINLjhVio/SuYvAI881WttS+zsSG6Grw8WNFH9+ql144KAjf+tY2oePGAP7z9arRBPEA/eHO71p7+EbbSB50SgZ54FNtNale4+wAHArp/Dvhlb68iuHi6NnpXtngm2S0gRRgYFdfblGA+apniQjqKi8lQ9SFQEIrH1aHepAFR2On5Aytbml2QjA4rUaIeVisrULZS/IHWo0hC9BTJo6o3cG4Hisu4ssuSFqtJaH0qJrPPanx2YHamXkGxeB2qlbu5uSpFbdpCDFknnFVb+Uwg4rMurhnzUmkxs56d66LTrcqATWtGdsJA9KwfETN5L4HY1+F3/ByReXyfDXU444GKMAGI9O9fhFRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRWx4Q8NX3iDUkS3jO0N1x1r6Y+DP7PWrav5WLcnOP4K+4f2afgpdeHI7cT2+NuP4a+/v2aYItKjhTbjBFfYPgLW430+OMP6cZru9PfzoC2f4awvEcDMGwK4vWLSTB21z8llds52nv6UyfSdTkTCP8ApWXe+Ftel5SU/wDfNZd34L8Qtn98f++a6vwV4V1K3RBO2fXiuo1nw7cTW4Vf7vpXO6T4G1H+3DK3K/7teqeE/DZt4VLryB6V2Omo9vgA1vWFw5wN1aAlJHJpQwPQ0u7K4NVLqMOORVnT7YAD5a1IIgg6VO4+TFULtMt0qEI3pTJI81Xlti3aqs9j3xVOe1wcbaj+yZ7U1olj6iq13skHAqlFaFZy+K1YGCQ7TWfqSNICVqkLN2561o6PYkdR3roLa3CRg4qV3CIRntWJrUiGNyfQ1+Lv/BxBYaXefCXWhPAD+4bv/smv58qKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK2vCfjbV/Ct9FPazZjRwWQjtX6R/sJaqvjq3s3ljB3hfvLX3V4U8JrY7RHCOPQV6x8PNWm0NlPlsMH+6a92+GfxSMlylqWbp3Fe9+EvEX2uy35P3ag13U8g/4Vy+oXYkzWW04jYninQapl9mP0rUtn81M7P0qteTLHnKj8qs6ZqyQgcitKfXwygLzx6Umjas81/gRnp/dr0HQZC8IO3t0xWmj47Vqac4wOK0S+0celNS4JfFWEIZck0yVM1csVAAGMVfXoOae5G3rVO4GTimrED2prRY7fnUbJ3AqGVMiqc9uCc1WkIjFZ97cEZxVKOZnPepuQu4io3vGTgZqJ7gv2P5VNbRiTBxWvpdooxxWuLdREKqXShQea57XHCxvk9jX4of8ABxJrcdr8K9ZUzgEwMBz/ALJr8B6KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKktIWubqO3UZLyBQPqa/TX/gnWkWlWtis3GAtfpX8MdPtNYSMhc5xXqn/CBbLZHt4cEqD0q/4G8NavZ6+rFMJivovwK0kGnYk4+Sm6/qMUasWauU1HxBZxZ3SfrWQ/ivT2Ygzd/WpdP8Rac1x/ra6nTdZ01oD+87Vma1q9rg+W9Za68I/uyVteGL46o+M55xXoHhvQEysxTrXbaTaxRR7cdqui3VugNXLRPLwDV1WDjFAjx82Kesu3ipFy/Xn0q7aqQBVoMRxQzsRxULgsRmnptHWmTMgquXXJ5qOQpjNVLiRRxVC4YGqNwqt1qCJI1PIqZmhKYBqrNEpPFRGL0FW7VCO1atgxXjNaBmYxACqN8ZihI6Vxvi3VBZwSNI2MKa/n8/4OQPiiJtPfw7a3PNxdxoV3dRnn9M1+OdFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFOijeaQRRjJY4Ar0f4V/Ca41nV7WeWMsfMU1+lP7HPwfuLSC1KhxwvQ1+lP7O/wrl+zQF9x4HU19IWfw0VLSMGPPyDrVzSvh9HBdBhCPyrtdJ8NmK2KAEfLWP4h8GyXQYBmH41yWpfCOe9z+9kGfRjWSvwCuCxb7RNyf75qzbfAye2cP503/AH2a04Phxc2cZXzZOn941R1DwVOucu5/E1Db/D2a5x8z/g1dZ4F8BvpbgsWPzZ5NeoaNaiK3VMVsWsXIArTtbTdjirS6fnnmrFvppzyT+dW/7OGyoH0v5s8/nUsVls61bhh21P5ZIwRSGGmm2HY0htT6n86jksi3Umom07ByCajlsSRjJ/Oqc+mFj1P51EdD3dc1DP4dBz1/Oq58M5Ocmj/hF++4/nSjw0B0z+dH/CMqex/OnLonletSJa+Uak84KMZqK7uV8hvpXlnxUuGezmVHI+U9DX4Ef8F6P2d/EfjKSbxZpImlkspvNWPcSGAByMfTNfkO6PG5jkQqynDKwwQfSkoooooooooooooooooooooooooooooooor/2Q=='}], 'status': '0'}

因此其解析的图片数据是在data上:

    r = requests.post(url=url, headers=headers, data=json.dumps(data))
    result=r.json();
    img=result["results"][0]
    with open("2.jpg", "wb") as fp:
        fp.write(base64.b64decode(img["data"].split(',')[-1]))

(附完整代码):

# coding: utf8
import requests
import json
import cv2
import base64


def cv2_to_base64(image):
    data = cv2.imencode('.jpg', image)[1]
    return base64.b64encode(data.tostring()).decode('utf8')


if __name__ == '__main__':

    # files = [("image", (open(item, "rb"))) for item in file_list]
    # 获取图片的base64编码格式
    img1 = cv2_to_base64(cv2.imread("C:/Users/Lenovo/Pictures/2.jpg"))
    # img2 = cv2_to_base64(cv2.imread("../../../../docs/imgs/woman_mask.jpg"))
    data = {'images': [img1]}
    # 指定content-type
    headers = {"Content-type": "application/json"}
    # 发送HTTP请求
    url = "http://121.220.131.209:8866/predict/deeplabv3p_xception65_humanseg"
    r = requests.post(url=url, headers=headers, data=json.dumps(data))
    result=r.json();
    print(result)
    img=result["results"][0]
    with open("2-1.jpg", "wb") as fp:
        fp.write(base64.b64decode(img["data"].split(',')[-1]))

你可能感兴趣的:(PaddleHub部署deeplabv3p_xception65_humanseg)