- 标题:2025传统制造业护网实战指南:从合规防御到智能免疫的体系化进阶
上海云盾商务经理杨杨
网络
引言2025年,随着《工业互联网企业网络安全》三项国家标准全面实施,护网行动已从“合规检查”升级为“能力对抗”。传统制造业在数字化转型浪潮中,面临设备老旧、人才短缺、供应链风险激增等挑战,41.5%的企业计划年内增加安全预算。本文将结合新规要求与行业最佳实践,深度解析传统制造业如何构建“技术-管理-运营”三位一体的护网防御体系。一、传统制造业的护网困境:三大核心矛盾1.设备老旧化vs安全新标准历史
- 【零基础学AI】第30讲:生成对抗网络(GAN)实战 - 手写数字生成
1989
0基础学AI人工智能生成对抗网络神经网络python机器学习近邻算法深度学习
本节课你将学到GAN的基本原理和工作机制使用PyTorch构建生成器和判别器DCGAN架构实现技巧训练GAN模型的实用技巧开始之前环境要求Python3.8+需要安装的包:pipinstalltorchtorchvisionmatplotlibnumpyGPU推荐(可大幅加速训练)前置知识第21讲TensorFlow基础第23讲神经网络原理基本PyTorch使用经验核心概念什么是GAN?GAN就像
- 黑客攻防演练之:红队攻击の常见战术及案例
黑客飓风
web安全安全网络
HVV和HW最近大家看到的比较多,一般指的攻防演练。“攻防演练”通常是指在网络安全领域中,通过模拟攻击和防御的对抗过程,来检验和提升系统安全性、人员技能水平以及应对突发事件能力的一种实践性活动。什么是红队攻防演练,也常被称为“网络安全攻防演练”或“红蓝对抗演练”,是一种通过模拟网络攻击和防御过程,来评估和提升网络安全防护能力的实践活动。它广泛应用于网络安全领域,以及军事、企业、政府机构等多个行业,
- 三星半导体重大改变,启动价格战!
iccnewer
在半导体这个拼技术、拼资金、拼时间的赛道上,三星最近做出了一个颇为务实的决定——不再一味追求最先进的工艺,而是把重心转向4-7nm这个"甜蜜区间",用30%的价格优势来对抗台积电的技术领先。三星之前的路线很激进,想要在1.4nm工艺上超越台积电,抢占技术制高点。但现实给了它一记重锤——与英伟达和高通的初步合作评估结果不尽人意,3nm以下工艺虽然良率达到了40%,但大客户的订单却迟迟拿不到手。于是三
- AIGC领域AI作画:在数字雕塑中的应用实践
AI原生应用开发
AI原生应用开发AIGCAI作画ai
AIGC领域AI作画:在数字雕塑中的应用实践关键词:AIGC、AI作画、数字雕塑、生成对抗网络、3D建模、艺术创作、深度学习摘要:本文深入探讨了AIGC(人工智能生成内容)技术在数字雕塑领域的创新应用。我们将从技术原理、算法实现到实际案例,全面解析AI如何赋能传统数字雕塑创作流程。文章首先介绍AIGC在艺术创作中的背景和发展现状,然后详细讲解核心算法原理和数学模型,接着通过实际项目案例展示AI作画
- AIGC空间智能在服装设计领域的颠覆性变革
AI天才研究院
ChatGPT实战ChatGPTAI大模型应用入门实战与进阶AIGCai
AIGC空间智能在服装设计领域的颠覆性变革关键词:AIGC、空间智能、服装设计、数字孪生、生成式AI、3D人体建模、智能设计系统摘要:本文深入探讨AIGC(人工智能生成内容)与空间智能技术在服装设计领域的融合创新,揭示其如何通过三维人体建模、场景模拟、智能生成算法重构传统设计流程。从技术原理层解析空间智能的核心模块,结合生成对抗网络(GAN)、Transformer模型等前沿算法,展示从创意生成到
- Python机器学习与深度学习:决策树、随机森林、XGBoost与LightGBM、迁移学习、循环神经网络、长短时记忆网络、时间卷积网络、自编码器、生成对抗网络、YOLO目标检测等
WangYan2022
机器学习/深度学习Python机器学习深度学习随机森林迁移学习
融合最新技术动态与实战经验,旨在系统提升以下能力:①掌握ChatGPT、DeepSeek等大语言模型在代码生成、模型调试、实验设计、论文撰写等方面的实际应用技巧②深入理解深度学习与经典机器学习算法的关联与差异,掌握其理论基础③熟练运用PyTorch实现各类深度学习模型,包括迁移学习、循环神经网络(RNN)、长短时记忆网络(LSTM)、时间卷积网络(TCN)、自编码器、生成对抗网络(GAN)、YOL
- 生成式人工智能实战 | 条件生成对抗网络(conditional Generative Adversarial Network, cGAN)
盼小辉丶
生成对抗网络神经网络深度学习生成式人工智能pytorch
生成式人工智能实战|条件生成对抗网络0.前言1.条件生成对抗网络1.1GAN基础回顾1.2cGAN核心思想2.cGAN网络架构2.1数学原理2.2网络架构3.实现cGAN3.1环境准备与数据加载3.2模型构建3.3模型训练0.前言生成对抗网络(GenerativeAdversarialNetwork,GAN)是近年来深度学习领域最具突破性的技术之一,能够生成逼真的图像、音频甚至文本。然而,传统的G
- Python训练营打卡 Day53
yunvwugua__
python自学打卡python开发语言
对抗生成网络知识点回顾:对抗生成网络的思想:关注损失从何而来生成器、判别器nn.sequential容器:适合于按顺序运算的情况,简化前向传播写法leakyReLU介绍:避免relu的神经元失活现象对抗生成网络(GAN)知识点回顾对抗生成网络的思想思想:就像在餐厅中,有一个厨师(生成器)负责制作假菜,一个评论家(判别器)负责区分真菜和假菜。厨师的目标是制作出评论家无法区分的假菜,而评论家的目标是找
- 攻防对抗的工作原理和架构
hao_wujing
安全
大家读完觉得有帮助记得关注和点赞!!!**攻防对抗(CyberKillChainDefense)**是网络安全领域的动态博弈过程,攻击方通过**入侵链**突破防御,防御方则构建**纵深的检测响应体系**进行拦截反制。其本质是**攻击成本与防御效能的持续对抗升级**。以下从工作原理到架构的深度解析:---###一、攻防对抗核心工作原理####**攻击链(CyberKillChain)vs防御链(De
- 性能更优越的国产替代电源模块 —— GC4644N
上海宸屿电子
嵌入式硬件
近期印巴冲突再度升级,这场自1971年以来最严重的军事对抗在2025年5月全面爆发,印度与巴基斯坦在克什米尔地区展开激烈交火。这场冲突不仅搅动南亚地缘格局,更意外成为中国高科技装备的实战检验场——中国援巴战机搭载的新型雷达系统凭借卓越性能,使导弹精准度与射程大幅提升,令印度空军措手不及。在此背景下,雷达系统的供电稳定性成为决定战场胜负的关键要素。作为雷达系统的"动力心脏",电源管理模块的性能直接影
- 游戏开发引擎安全评估指南:10款主流工具防御能力深度解析
李詹
网络
Unity、UnrealEngine等10款主流游戏开发软件的安全防护机制,揭示其对抗DDoS攻击、数据泄露等网络威胁的核心能力。基于NIST网络安全框架与OWASP标准,构建覆盖开发环境安全、实时通信加密、云服务防护的三维评估体系,为游戏开发者提供兼顾功能与安全的技术选型指南。游戏开发环境的安全基线构建开发工具链的完整性验证是安全基线的第一道防线。Unity的PackageManager采用SH
- 深度探索:机器学习中的 条件生成对抗网络(Conditional GAN, CGAN)算法原理及其应用
目录1.引言与背景2.CGAN定理3.算法原理4.算法实现5.优缺点分析优点:缺点:6.案例应用7.对比与其他算法8.结论与展望1.引言与背景生成对抗网络(GenerativeAdversarialNetworks,GANs)作为一种深度学习框架,在无监督学习领域展现出强大的能力,特别在图像、音频、文本等复杂数据的生成任务中取得了显著成果。然而,原始GAN模型在生成过程中缺乏对生成样本特定属性的直
- PyTorch实战(13)——WGAN详解与实现
盼小辉丶
pytorch人工智能python
PyTorch实战(13)——WGAN详解与实现0.前言1.WGAN与梯度惩罚2.WGAN工作原理2.1Wasserstein损失2.2Lipschitz约束2.3强制Lipschitz约束3.实现WGAN3.1数据加载与处理3.2模型构建3.3模型训练小结系列链接0.前言生成对抗网络(GenerativeAdversarialNetwork,GAN)模型训练过程通常会面临一些问题,如模式崩溃(生
- AI绘画与时尚设计:用AI创造前卫服装设计
AIGC应用创新大全
AI作画人工智能ai
AI绘画与时尚设计:用AI创造前卫服装设计关键词:AI绘画、时尚设计、生成对抗网络、创意辅助、服装设计流程、风格迁移、3D服装建模摘要:本文将探讨AI如何革新时尚设计领域,从创意构思到成品展示的全流程。我们将了解AI绘画技术在服装设计中的应用原理,分析实际案例,并展望这一技术对未来时尚产业的影响。文章将用通俗易懂的方式解释复杂的技术概念,帮助读者理解AI如何成为设计师的"数字创意伙伴"。背景介绍目
- Random Erasing:计算机视觉的「隐形斗篷」——遮挡艺术的对抗学习革命
星光银河
深度学习-代表性技术主题/概念层面计算机视觉学习人工智能cnn神经网络深度学习
当ImageNet冠军模型在真实世界的遮挡面前崩溃时(识别准确率骤降38%),中科院自动化研究所2017年提出的RandomErasing技术以一纸惊艳了学界。这种在图像中随机挖洞的简单操作,让ResNet-50在Partial-iNaturalist数据集上抗遮挡能力提升4.2倍,错误率降低59%,揭示了模型鲁棒性的深层密码。️遮挡困境:视觉模型的阿喀琉斯之踵图像识别鲁棒性演化史时代技术Imag
- 第G1周:生成对抗网络(GAN)入门
本文为365天深度学习训练营原作者:K同学啊基础任务:1.了解什么是生成对抗网络2.生成对抗网络结构是怎么样的3.学习本文代码,并跑通代码进阶任务:调用训练好的模型生成新图像一、理论基础生成对抗网络(GenerativeAdversarialNetworks,GAN)是近年来深度学习领域的一个热点方向。GAN并不指代某一个具体的神经网络,而是指一类基于博弈思想而设计的神经网络。GAN由两个分别被称
- 对抗同质化竞争的差异化突围方案
在产品同质化严重的市场环境下,商家想要脱颖而出愈发困难。推客系统为商家提供了差异化竞争的有效策略,助力商家打破僵局。系统支持商家打造个性化的推广体系,通过定制专属的推客激励政策,吸引具备特殊资源和能力的推客加入。例如,一家主打国潮风格的服饰商家,针对汉服爱好者社群群主、国风博主等推客,推出“国潮推广勋章计划”,推客累计推广达到一定销售额,不仅能获得高额佣金,还可解锁限量版国潮周边礼品、参与品牌新品
- 提示词工程推荐阅读论文
司南锤
LLMprompt人工智能自然语言处理
论文目录提示工程少样本提示思维链提示自洽性生成知识提示自动提示工程多模态提示提示技巧对抗提示提示工程PromptEngineeringforText-BasedGenerativeModels论文链接:https://arxiv.org/abs/2107.13586简介:本文概述了提示工程,并讨论了它在各种基于文本的生成模型中的应用。少样本提示Few-shotLearningwithRetriev
- 数字人视频剪辑与数字人分身源码开发的的核心技术解析
微~18339948121
数字人分身源码数字人剪辑源码数字人源码djangopygamevirtualenvplotlyscikit-learnflasktornado
数字人视频剪辑与分身的核心技术解析数字人视频剪辑和分身技术是近年来人工智能与计算机视觉领域的热点,涉及虚拟形象生成、动作驱动、语音合成等多项技术。以下从技术实现、应用场景和工具选择三个方面展开分析。数字人视频剪辑的关键技术视频剪辑中数字人的核心在于动态形象的生成与编辑。基于深度学习的生成对抗网络(GAN)和3D建模技术可实现高保真虚拟形象构建。典型流程包括:人物建模:通过多视角图像或视频数据重建3
- Python Day53
别勉.
python机器学习python开发语言
Task:1.对抗生成网络的思想:关注损失从何而来2.生成器、判别器3.nn.sequential容器:适合于按顺序运算的情况,简化前向传播写法4.leakyReLU介绍:避免relu的神经元失活现象1.对抗生成网络的思想:关注损失从何而来这是理解GANs的关键!传统的神经网络训练中,我们通常会直接定义一个损失函数(如均方误差MSE、交叉熵CE),然后通过反向传播来优化这个损失。这个损失的“来源”
- 长尾形分布论文速览三十篇【60-89】
木木阳
Long-tailed人工智能
长尾形分布速览(60-89)这些研究展示了LLMs在长尾数据分布、持续学习、异常检测、联邦学习、对比学习、知识图谱、推荐系统、多目标跟踪、标签修复、对象检测、医疗生物医学以及其他应用中的广泛应用。通过优化和创新,LLMs在这些领域展现了卓越的性能,并为解决长尾问题提供了有效的工具和方法。1.长尾持续学习与对抗学习长尾持续学习(Paper60):通过优化器状态重用来减少遗忘,提高在长尾任务中的持续学
- SoK: A Critical Evaluation of Efficient Website Fingerprinting Defenses
2023攻击和防御模型防御评估准确度、精确度和召回率:使用准确率来评估攻击模型在多类别封闭世界设置中的性能,但在二进制开放世界设置中使用精确率和召回率防御策略:(1)增加虚拟流量、(2)增加流量延迟、(3)将流量从一个流移到另一个流固定速率发送流量F,随机抽样以添加填充R,修改流量以产生与目标流量样本或模式的碰撞C,将流量分成多个流S,使用对抗性扰动来欺骗机器学习模型AF:(1)(2)BuFLO,
- 《ChromaGAN》论文简读及demo运行(萌新手记)
kkpeach
学习手记python机器学习计算机视觉
论文题目:《ChromaGAN:AdversarialPictureColorizationwithSemanticClassDistribution》《具有语义类别分布的对抗图片着色》论文地址:https://arxiv.org/pdf/1907.09837.pdf源码地址:https://github.com/pvitoria/ChromaGAN声明:仅学习用途。这是WACV2020收录的一篇
- [2025CVPR]DE-GANs:一种高效的生成对抗网络
清风AI
深度学习算法详解及代码复现生成对抗网络人工智能神经网络
目录引言:数据高效GAN的困境核心原理:动态质量筛选机制1.判别器拒绝采样(DRS)的再思考2.质量感知动态拒绝公式(1)质量感知阶段(2)动态拒绝阶段模型架构:轻量化设计技术突破:三大创新点1.首创训练阶段DRS2.动态拒绝机制3.质量重加权策略实验验证:全面性能提升1.数据集与指标2.对比实验结果(1)低样本数据集(2)FFHQ数据集代码解析:关键实现细节对比结果:全面超越现有方法1.低样本数
- Open AI在AI人工智能领域的技术安全防护体系
AI智能探索者
AIAgent智能体开发实战人工智能安全网络ai
OpenAI在AI人工智能领域的技术安全防护体系关键词:OpenAI、AI安全、技术防护、伦理框架、模型对齐、数据隐私、对抗攻击摘要:本文将深入探讨OpenAI在人工智能领域构建的多层次技术安全防护体系。我们将从基础概念出发,逐步解析OpenAI如何通过技术创新和系统设计来确保AI系统的安全性、可靠性和可控性。文章将涵盖从数据安全到模型对齐,从伦理框架到实际防护技术的全方位内容,帮助读者全面理解现
- StackGAN(堆叠生成对抗网络)的介绍
简介简介:本文提出了StackGAN(堆叠生成对抗网络),解决从文本描述生成高分辨率照片级真实图像的挑战。该方法将复杂的生成任务分解为两个阶段:Stage-IGAN生成64×64的粗糙轮廓和基本颜色,Stage-IIGAN基于Stage-I结果和文本描述生成256×256的高分辨率图像并修正缺陷。同时引入条件增强技术提高训练稳定性和样本多样性。论文题目:StackGAN:TexttoPhoto-r
- 经典文生图的GAN模型-HDGAN介绍
这张生成的图像能检测吗
GAN系列生成对抗网络人工智能神经网络计算机视觉深度学习机器学习
简介简介:这篇论文提出了一种名为HDGAN(Hierarchically-nestedDiscriminatorsGAN)的新方法,用于解决文本到图像合成这一挑战性任务。该方法的主要创新点包括:分层嵌套对抗目标:在网络层次结构内部引入配套的分层嵌套对抗目标,正则化中层表示并辅助生成器训练单流生成器架构:提出可扩展的单流生成器架构,更好地适应联合鉴别器并将生成图像提升到高分辨率多目的对抗损失:采用多
- StackGAN(堆叠生成对抗网络)
这张生成的图像能检测吗
优质GAN模型训练自己的数据集生成对抗网络人工智能神经网络计算机视觉深度学习算法
简介简介:本文提出了StackGAN(堆叠生成对抗网络),解决从文本描述生成高分辨率照片级真实图像的挑战。该方法将复杂的生成任务分解为两个阶段:Stage-IGAN生成64×64的粗糙轮廓和基本颜色,Stage-IIGAN基于Stage-I结果和文本描述生成256×256的高分辨率图像并修正缺陷。同时引入条件增强技术提高训练稳定性和样本多样性。论文题目:StackGAN:TexttoPhoto-r
- 九章数学体系:定义域无界化——AI鲁棒性的“隐形杀手“
九章数学体系
数学建模拓扑学人工智能神经网络
九章数学体系:定义域无界化——AI鲁棒性的"隐形杀手"摘要传统人工智能模型在面对边缘场景时常常表现出鲁棒性不足的问题,本文深入分析发现,这种现象的本质根源在于模型缺乏显式的定义域约束,导致无界化假设成为影响AI鲁棒性的"隐形杀手"。文章系统阐述了无界假设如何引发对抗样本脆弱性和数值不稳定等核心问题,并引入九章数学体系的定义域约束理论,为解决这些问题提供了全新的数学视角和工程实现路径。研究表明,通过
- 开发者关心的那些事
圣子足道
ios游戏编程apple支付
我要在app里添加IAP,必须要注册自己的产品标识符(product identifiers)。产品标识符是什么?
产品标识符(Product Identifiers)是一串字符串,它用来识别你在应用内贩卖的每件商品。App Store用产品标识符来检索产品信息,标识符只能包含大小写字母(A-Z)、数字(0-9)、下划线(-)、以及圆点(.)。你可以任意排列这些元素,但我们建议你创建标识符时使用
- 负载均衡器技术Nginx和F5的优缺点对比
bijian1013
nginxF5
对于数据流量过大的网络中,往往单一设备无法承担,需要多台设备进行数据分流,而负载均衡器就是用来将数据分流到多台设备的一个转发器。
目前有许多不同的负载均衡技术用以满足不同的应用需求,如软/硬件负载均衡、本地/全局负载均衡、更高
- LeetCode[Math] - #9 Palindrome Number
Cwind
javaAlgorithm题解LeetCodeMath
原题链接:#9 Palindrome Number
要求:
判断一个整数是否是回文数,不要使用额外的存储空间
难度:简单
分析:
题目限制不允许使用额外的存储空间应指不允许使用O(n)的内存空间,O(1)的内存用于存储中间结果是可以接受的。于是考虑将该整型数反转,然后与原数字进行比较。
注:没有看到有关负数是否可以是回文数的明确结论,例如
- 画图板的基本实现
15700786134
画图板
要实现画图板的基本功能,除了在qq登陆界面中用到的组件和方法外,还需要添加鼠标监听器,和接口实现。
首先,需要显示一个JFrame界面:
public class DrameFrame extends JFrame { //显示
- linux的ps命令
被触发
linux
Linux中的ps命令是Process Status的缩写。ps命令用来列出系统中当前运行的那些进程。ps命令列出的是当前那些进程的快照,就是执行ps命令的那个时刻的那些进程,如果想要动态的显示进程信息,就可以使用top命令。
要对进程进行监测和控制,首先必须要了解当前进程的情况,也就是需要查看当前进程,而 ps 命令就是最基本同时也是非常强大的进程查看命令。使用该命令可以确定有哪些进程正在运行
- Android 音乐播放器 下一曲 连续跳几首歌
肆无忌惮_
android
最近在写安卓音乐播放器的时候遇到个问题。在MediaPlayer播放结束时会回调
player.setOnCompletionListener(new OnCompletionListener() {
@Override
public void onCompletion(MediaPlayer mp) {
mp.reset();
Log.i("H
- java导出txt文件的例子
知了ing
javaservlet
代码很简单就一个servlet,如下:
package com.eastcom.servlet;
import java.io.BufferedOutputStream;
import java.io.IOException;
import java.net.URLEncoder;
import java.sql.Connection;
import java.sql.Resu
- Scala stack试玩, 提高第三方依赖下载速度
矮蛋蛋
scalasbt
原文地址:
http://segmentfault.com/a/1190000002894524
sbt下载速度实在是惨不忍睹, 需要做些配置优化
下载typesafe离线包, 保存为ivy本地库
wget http://downloads.typesafe.com/typesafe-activator/1.3.4/typesafe-activator-1.3.4.zip
解压r
- phantomjs安装(linux,附带环境变量设置) ,以及casperjs安装。
alleni123
linuxspider
1. 首先从官网
http://phantomjs.org/下载phantomjs压缩包,解压缩到/root/phantomjs文件夹。
2. 安装依赖
sudo yum install fontconfig freetype libfreetype.so.6 libfontconfig.so.1 libstdc++.so.6
3. 配置环境变量
vi /etc/profil
- JAVA IO FileInputStream和FileOutputStream,字节流的打包输出
百合不是茶
java核心思想JAVA IO操作字节流
在程序设计语言中,数据的保存是基本,如果某程序语言不能保存数据那么该语言是不可能存在的,JAVA是当今最流行的面向对象设计语言之一,在保存数据中也有自己独特的一面,字节流和字符流
1,字节流是由字节构成的,字符流是由字符构成的 字节流和字符流都是继承的InputStream和OutPutStream ,java中两种最基本的就是字节流和字符流
类 FileInputStream
- Spring基础实例(依赖注入和控制反转)
bijian1013
spring
前提条件:在http://www.springsource.org/download网站上下载Spring框架,并将spring.jar、log4j-1.2.15.jar、commons-logging.jar加载至工程1.武器接口
package com.bijian.spring.base3;
public interface Weapon {
void kil
- HR看重的十大技能
bijian1013
提升能力HR成长
一个人掌握何种技能取决于他的兴趣、能力和聪明程度,也取决于他所能支配的资源以及制定的事业目标,拥有过硬技能的人有更多的工作机会。但是,由于经济发展前景不确定,掌握对你的事业有所帮助的技能显得尤为重要。以下是最受雇主欢迎的十种技能。 一、解决问题的能力 每天,我们都要在生活和工作中解决一些综合性的问题。那些能够发现问题、解决问题并迅速作出有效决
- 【Thrift一】Thrift编译安装
bit1129
thrift
什么是Thrift
The Apache Thrift software framework, for scalable cross-language services development, combines a software stack with a code generation engine to build services that work efficiently and s
- 【Avro三】Hadoop MapReduce读写Avro文件
bit1129
mapreduce
Avro是Doug Cutting(此人绝对是神一般的存在)牵头开发的。 开发之初就是围绕着完善Hadoop生态系统的数据处理而开展的(使用Avro作为Hadoop MapReduce需要处理数据序列化和反序列化的场景),因此Hadoop MapReduce集成Avro也就是自然而然的事情。
这个例子是一个简单的Hadoop MapReduce读取Avro格式的源文件进行计数统计,然后将计算结果
- nginx定制500,502,503,504页面
ronin47
nginx 错误显示
server {
listen 80;
error_page 500/500.html;
error_page 502/502.html;
error_page 503/503.html;
error_page 504/504.html;
location /test {return502;}}
配置很简单,和配
- java-1.二叉查找树转为双向链表
bylijinnan
二叉查找树
import java.util.ArrayList;
import java.util.List;
public class BSTreeToLinkedList {
/*
把二元查找树转变成排序的双向链表
题目:
输入一棵二元查找树,将该二元查找树转换成一个排序的双向链表。
要求不能创建任何新的结点,只调整指针的指向。
10
/ \
6 14
/ \
- Netty源码学习-HTTP-tunnel
bylijinnan
javanetty
Netty关于HTTP tunnel的说明:
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/channel/socket/http/package-summary.html#package_description
这个说明有点太简略了
一个完整的例子在这里:
https://github.com/bylijinnan
- JSONUtil.serialize(map)和JSON.toJSONString(map)的区别
coder_xpf
jqueryjsonmapval()
JSONUtil.serialize(map)和JSON.toJSONString(map)的区别
数据库查询出来的map有一个字段为空
通过System.out.println()输出 JSONUtil.serialize(map): {"one":"1","two":"nul
- Hibernate缓存总结
cuishikuan
开源sshjavawebhibernate缓存三大框架
一、为什么要用Hibernate缓存?
Hibernate是一个持久层框架,经常访问物理数据库。
为了降低应用程序对物理数据源访问的频次,从而提高应用程序的运行性能。
缓存内的数据是对物理数据源中的数据的复制,应用程序在运行时从缓存读写数据,在特定的时刻或事件会同步缓存和物理数据源的数据。
二、Hibernate缓存原理是怎样的?
Hibernate缓存包括两大类:Hib
- CentOs6
dalan_123
centos
首先su - 切换到root下面1、首先要先安装GCC GCC-C++ Openssl等以来模块:yum -y install make gcc gcc-c++ kernel-devel m4 ncurses-devel openssl-devel2、再安装ncurses模块yum -y install ncurses-develyum install ncurses-devel3、下载Erang
- 10款用 jquery 实现滚动条至页面底端自动加载数据效果
dcj3sjt126com
JavaScript
无限滚动自动翻页可以说是web2.0时代的一项堪称伟大的技术,它让我们在浏览页面的时候只需要把滚动条拉到网页底部就能自动显示下一页的结果,改变了一直以来只能通过点击下一页来翻页这种常规做法。
无限滚动自动翻页技术的鼻祖是微博的先驱:推特(twitter),后来必应图片搜索、谷歌图片搜索、google reader、箱包批发网等纷纷抄袭了这一项技术,于是靠滚动浏览器滚动条
- ImageButton去边框&Button或者ImageButton的背景透明
dcj3sjt126com
imagebutton
在ImageButton中载入图片后,很多人会觉得有图片周围的白边会影响到美观,其实解决这个问题有两种方法
一种方法是将ImageButton的背景改为所需要的图片。如:android:background="@drawable/XXX"
第二种方法就是将ImageButton背景改为透明,这个方法更常用
在XML里;
<ImageBut
- JSP之c:foreach
eksliang
jspforearch
原文出自:http://www.cnblogs.com/draem0507/archive/2012/09/24/2699745.html
<c:forEach>标签用于通用数据循环,它有以下属性 属 性 描 述 是否必须 缺省值 items 进行循环的项目 否 无 begin 开始条件 否 0 end 结束条件 否 集合中的最后一个项目 step 步长 否 1
- Android实现主动连接蓝牙耳机
gqdy365
android
在Android程序中可以实现自动扫描蓝牙、配对蓝牙、建立数据通道。蓝牙分不同类型,这篇文字只讨论如何与蓝牙耳机连接。
大致可以分三步:
一、扫描蓝牙设备:
1、注册并监听广播:
BluetoothAdapter.ACTION_DISCOVERY_STARTED
BluetoothDevice.ACTION_FOUND
BluetoothAdapter.ACTION_DIS
- android学习轨迹之四:org.json.JSONException: No value for
hyz301
json
org.json.JSONException: No value for items
在JSON解析中会遇到一种错误,很常见的错误
06-21 12:19:08.714 2098-2127/com.jikexueyuan.secret I/System.out﹕ Result:{"status":1,"page":1,&
- 干货分享:从零开始学编程 系列汇总
justjavac
编程
程序员总爱重新发明轮子,于是做了要给轮子汇总。
从零开始写个编译器吧系列 (知乎专栏)
从零开始写一个简单的操作系统 (伯乐在线)
从零开始写JavaScript框架 (图灵社区)
从零开始写jQuery框架 (蓝色理想 )
从零开始nodejs系列文章 (粉丝日志)
从零开始编写网络游戏 
- jquery-autocomplete 使用手册
macroli
jqueryAjax脚本
jquery-autocomplete学习
一、用前必备
官方网站:http://bassistance.de/jquery-plugins/jquery-plugin-autocomplete/
当前版本:1.1
需要JQuery版本:1.2.6
二、使用
<script src="./jquery-1.3.2.js" type="text/ja
- PLSQL-Developer或者Navicat等工具连接远程oracle数据库的详细配置以及数据库编码的修改
超声波
oracleplsql
在服务器上将Oracle安装好之后接下来要做的就是通过本地机器来远程连接服务器端的oracle数据库,常用的客户端连接工具就是PLSQL-Developer或者Navicat这些工具了。刚开始也是各种报错,什么TNS:no listener;TNS:lost connection;TNS:target hosts...花了一天的时间终于让PLSQL-Developer和Navicat等这些客户
- 数据仓库数据模型之:极限存储--历史拉链表
superlxw1234
极限存储数据仓库数据模型拉链历史表
在数据仓库的数据模型设计过程中,经常会遇到这样的需求:
1. 数据量比较大; 2. 表中的部分字段会被update,如用户的地址,产品的描述信息,订单的状态等等; 3. 需要查看某一个时间点或者时间段的历史快照信息,比如,查看某一个订单在历史某一个时间点的状态, 比如,查看某一个用户在过去某一段时间内,更新过几次等等; 4. 变化的比例和频率不是很大,比如,总共有10
- 10点睛Spring MVC4.1-全局异常处理
wiselyman
spring mvc
10.1 全局异常处理
使用@ControllerAdvice注解来实现全局异常处理;
使用@ControllerAdvice的属性缩小处理范围
10.2 演示
演示控制器
package com.wisely.web;
import org.springframework.stereotype.Controller;
import org.spring