- Open AI在AI人工智能领域的技术安全防护体系
AI智能探索者
AIAgent智能体开发实战人工智能安全网络ai
OpenAI在AI人工智能领域的技术安全防护体系关键词:OpenAI、AI安全、技术防护、伦理框架、模型对齐、数据隐私、对抗攻击摘要:本文将深入探讨OpenAI在人工智能领域构建的多层次技术安全防护体系。我们将从基础概念出发,逐步解析OpenAI如何通过技术创新和系统设计来确保AI系统的安全性、可靠性和可控性。文章将涵盖从数据安全到模型对齐,从伦理框架到实际防护技术的全方位内容,帮助读者全面理解现
- 揭秘自然语言处理在AI人工智能领域的奥秘
AI智能探索者
AIAgent智能体开发实战人工智能自然语言处理easyuiai
揭秘自然语言处理在AI人工智能领域的奥秘关键词:自然语言处理、AI人工智能、语言理解、语言生成、语义分析摘要:本文深入探讨了自然语言处理(NLP)在AI人工智能领域的奥秘。首先介绍了自然语言处理的背景,包括目的、预期读者、文档结构和相关术语。接着阐述了自然语言处理的核心概念与联系,通过文本示意图和Mermaid流程图进行展示。详细讲解了核心算法原理和具体操作步骤,并用Python源代码进行阐述。分
- 【LangChain编程:从入门到实践】AI 大模型检索增强生成 RAG 实践
AI智能应用
Python入门实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
LangChain编程:从入门到实践-AI大模型检索增强生成RAG实践关键词:LangChain,RAG,大语言模型,检索增强生成,向量数据库,嵌入模型,提示工程1.背景介绍在人工智能和自然语言处理领域,大语言模型(LargeLanguageModels,LLMs)的出现无疑是一个重大突破。像GPT-3、GPT-4这样的模型展现出了惊人的语言理解和生成能力,为各种应用场景带来了无限可能。然而,这些
- 基于深度学习的线上问诊系统设计与实现(Python+Django+MySQL)
神经网络15044
深度学习算法神经网络python深度学习django机器学习人工智能算法目标检测
基于深度学习的线上问诊系统设计与实现(Python+Django+MySQL)一、系统概述本系统结合YOLOv8目标检测和ResNet50图像分类算法,构建了一个智能线上问诊平台。系统支持用户上传医学影像(皮肤照片/X光片),自动分析并生成诊断报告,同时提供医生审核功能。二、技术栈后端框架:Django4.2数据库:MySQL8.0深度学习:YOLOv8:皮肤病变区域检测ResNet50:肺炎X光
- 深度学习中常见激活函数总结
向左转, 向右走ˉ
深度学习人工智能pytorchpython
以下是一份深度学习激活函数的系统总结,涵盖定义、类型、作用、应用及选择影响,便于你快速掌握核心知识:一、激活函数的定义在神经网络中,激活函数(ActivationFunction)是神经元计算输出的非线性变换函数,作用于加权输入和偏置之和:输出=f(加权和+偏置)核心价值:引入非线性,使神经网络能够拟合任意复杂函数(无激活函数的深度网络等价于单层线性模型)。二、常见激活函数类型1.线性函数(Lin
- AI离全社会普及,只差一个计算中心?
a13163944010
人工智能
过去十年,人工智能(AI)大爆炸,并第一次走进普通人的生活。但蓬勃发展的AI却碰到一个空前棘手的问题:自2012年以来,AI算力需求6年增长30万倍,远超摩尔定律!人类现有的基础设施,已跟不上AI算力需求的增长。未来,该怎么办?【1】一百多年前,人类也曾面临同样的难题。1866年,德国西门子发明自激发电机,开启了人类的电力时代。此后十几年,虽然很多企业纷纷采用电能这种新的动力,但一台电机只能供应一
- 首次使用“非英伟达”芯片!OpenAI租用谷歌TPU,降低推理计算成本
加百力
科技知识财经研究人工智能chatgpt
OpenAI近期开始租用谷歌TPU芯片,这是该公司首次大规模使用非英伟达芯片。除了OpenAI外、苹果、SafeSuperintelligence和Cohere等公司也一直租用谷歌云的TPU。英伟达的芯片主导地位正被侵蚀,OpenAI租用谷歌TPU,为首次大规模使用“非英伟达”芯片。周六,据媒体报道,作为全球最大的人工智能芯片客户之一,OpenAI近期开始租用谷歌的TPU芯片为ChatGPT等产品
- AI人工智能 神经网络
马里亚纳海沟网
人工智能神经网络深度学习笔记运维全文检索搜索引擎
**AI人工智能神经网络概述**神经网络是并行计算设备,它们试图构建大脑的计算机模型。背后的主要目标是开发一个系统来执行各种计算任务比传统系统更快。这些任务包括模式识别和分类,近似,优化和数据聚类什么是人工神经网络(ANN)人工神经网络(ANN)是一个高效的计算系统,其核心主题是借用生物神经网络的类比。人工神经网络也被称为人工神经系统,并行分布式处理系统和连接系统。ANN获取了大量以某种模式相互连
- FP16、BF16、INT8、INT4精度模型加载所需显存以及硬件适配的分析
herosunly
大模型精度BF16硬件适配
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。 本文主要介绍了FP16、INT8、INT4精度模型加载占用显存大小的分析,希望对学习大
- 智能办公与科研革命:ChatGPT+DeepSeek大模型在论文撰写、数据分析与AI建模中的实践指南
jwwkyjspt
机器学习SCI论文人工智能chatgpt语言模型机器学习
随着人工智能技术的快速发展,大语言模型如ChatGPT和DeepSeek在科研领域的应用正在为科研人员提供强大的支持。这些模型通过深度学习和大规模语料库训练,能够帮助科研人员高效地筛选文献、生成论文内容、进行数据分析和优化机器学习模型。ChatGPT和DeepSeek能够快速理解和生成复杂的语言,帮助研究人员在撰写论文时提高效率,不仅生成高质量的文章内容,还能优化论文结构和语言表达。在数据分析方面
- 初学Spring AI 笔记
笑衬人心。
大模型学习spring人工智能笔记
目录SpringAI简介依赖与环境配置基础概念集成OpenAI(或其他LLM提供商)Prompt模板引擎Embedding与向量数据库SpringAIChatClient使用SpringAI和LangChain对比常见问题与建议SpringAI简介SpringAI是Spring团队推出的人工智能集成框架,旨在简化AI模型(如OpenAI、HuggingFace、Mistral、AzureOpenA
- AI新高度——DEEPSEEK
数字隐士·赛博智者
ai
DeepSeek是由中国人工智能公司「深度求索」开发的一系列高性能大语言模型产品及相关技术体系,其定位为通用人工智能(AGI)探索者,目前已发展成为全球增长最快、性能领先的开源模型之一。下面是关于DeepSeek的详细介绍:一、DeepSeek的开发者与背景公司名称:杭州深度求索人工智能基础技术研究有限公司(成立于2023年)核心支持:由中国知名对冲基金「高毅资产」创立并提供资金与技术资源
- 【机器学习&深度学习】适合微调的模型选型指南
一叶千舟
深度学习【应用必备常识】深度学习人工智能
目录一、不同规模模型微调适用性二、微调技术类型对显存的影响三、选择建议(根据你的硬件)四、实际模型推荐五、不同模型适合人群六、推荐几个“非常适合微调”的模型七、推荐使用的微调技术八、场景选择示例场景1:智能客服(中文)场景2:法律问答(中文RAG)场景3:医学问答/健康咨询场景4:AI写作助手(中英文)场景5:代码补全/AI编程助手对比总结表九、不同参数模型特点9.1参数规模vs能力9.2微型模型
- 【机器学习&深度学习】本地部署 vs API调用:关键看显存!
一叶千舟
深度学习【应用必备常识】深度学习人工智能
目录一、本地部署VSAPI调用1.模型运行方式2.性能与速度3.成本4.隐私与安全5.何时选择哪种方式?二、为什么推荐本地部署?1️⃣零依赖网络和外部服务,更可靠稳定2️⃣无调用次数限制,更适合高频或批量推理3️⃣避免长期API费用,节省成本4️⃣保护用户隐私和数据安全5️⃣可自定义、深度优化6️⃣加载一次即可复用,低延迟高性能7️⃣离线可用(重要!)三、适合本地部署的情况四、本地部署条件4.1模
- 深度学习 vs 传统机器学习:哪个更适合你的项目?
AI大模型应用之禅
深度学习机器学习人工智能ai
深度学习vs传统机器学习:哪个更适合你的项目?关键词:深度学习、传统机器学习、特征工程、数据量、计算资源、项目选择、算法对比摘要:本文将用"炒菜"和"拼图"等生活案例,从核心原理、适用场景、资源需求等维度对比深度学习与传统机器学习。通过具体代码示例和真实项目场景分析,帮助开发者和企业决策者快速判断:你的项目该选深度学习还是传统机器学习?背景介绍目的和范围随着AI技术普及,"该用深度学习还是传统机器
- LLM大语言模型学习笔记(1)
Arixs666
大语言模型语言模型笔记人工智能
1.概念大语言模型(LLM,LargeLanguageModel),也称大型语言模型,是一种旨在理解和生成人类语言的人工智能模型。LLM通常指包含数百亿(或更多)参数的语言模型,它们在海量的文本数据上进行训练,从而获得对语言深层次的理解。2.能力2.1涌现能力区分大语言模型(LLM)与以前的预训练语言模型(PLM)最显著的特征之一是它们的涌现能力。涌现能力是一种令人惊讶的能力,它在小型模型中不明显
- [论文阅读] 人工智能 + 软件工程 | 揭秘ChatGPT在软件开发问题解决中的有效性:一项实证研究
张较瘦_
前沿技术论文阅读人工智能软件工程
揭秘ChatGPT在软件开发问题解决中的有效性:一项实证研究论文:WhatMakesChatGPTEffectiveforSoftwareIssueResolution?AnEmpiricalStudyofDeveloper-ChatGPTConversationsinGitHubarXiv:2506.22390WhatMakesChatGPTEffectiveforSoftwareIssueRe
- [论文阅读] 人工智能 + 软件工程 | 代码注释不一致问题研究:从数据革新到端到端解决方案
张较瘦_
前沿技术论文阅读人工智能软件工程
代码注释不一致问题研究:从数据革新到端到端解决方案原文:CCISOLVER:End-to-EndDetectionandRepairofMethod-LevelCode-CommentInconsistencyarXiv:2506.20558CCISolver:End-to-EndDetectionandRepairofMethod-LevelCode-CommentInconsistencyRe
- 【深度学习|学习笔记】如何在深度学习中使用 正则化技术 进行模型压缩、稀疏建模和迁移学习调优?
努力毕业的小土博^_^
机器学习基础算法优质笔记2深度学习学习笔记迁移学习人工智能机器学习
【深度学习|学习笔记】如何在深度学习中使用正则化技术进行模型压缩、稀疏建模和迁移学习调优?【深度学习|学习笔记】如何在深度学习中使用正则化技术进行模型压缩、稀疏建模和迁移学习调优?文章目录【深度学习|学习笔记】如何在深度学习中使用正则化技术进行模型压缩、稀疏建模和迁移学习调优?✅一、使用正则化进行模型压缩(ModelCompression)目标:方法:L1正则化促使权重稀疏化代码示例:后续压缩步骤
- 数字孪生:未来城市管理的革命性技术
大有数据可视化
信息可视化
一、数字孪生技术概述数字孪生技术是一种通过创建虚拟模型与物理实体之间实时交互的技术。它借助物联网、大数据、云计算、人工智能等前沿技术,实现对物理实体的精准映射与动态仿真。数字孪生的核心在于构建一个与物理世界相对应的虚拟模型,该模型能够实时反映物理实体的状态,并通过数据分析与模拟优化其性能。在城市管理领域,数字孪生技术为城市管理者提供了一种全新的视角和工具。城市是一个复杂的巨系统,涉及基础设施、交通
- 人类编程时代即将终结?OpenAI首席产品官预测AI将在今年底全面超越人类程序员
前端javascript
ReactHook深入浅出CSS技巧与案例详解vue2与vue3技巧合集VueUse源码解读近日,OpenAI首席产品官KevinWeil在接受采访时表示,人工智能的发展速度远超预期,今年底就有可能在编程领域永久性地超越人类程序员。这一观点立即引发了行业热议,也让程序员们对未来产生了深刻的思考。人工智能的进展速度远超想象在与VarunMayya和TanmayBhat共同主持的YouTube节目《O
- Python大数据分析&人工智能教程 - Django-Celery异步处理(深入解析与实战案例)
AI_DL_CODE
python数据分析DjangoCelery异步处理Celery
文章目录1.概念介绍1.1Django框架概述1.2Celery异步任务队列1.3AMQP协议与消息路由2.环境搭建2.1安装Django和Celery2.2配置Redis作为消息代理3.Celery架构与工作原理3.1Celery组件介绍3.2任务生命周期3.3任务调度与执行3.3.1定时任务3.3.2异步任务调用3.3.3任务结果查询4.Django与Celery集成4.1创建Celery实例
- 智能之火,重塑创造:大模型如何点燃新一代开发引擎?
黑巧克力可减脂
AIGC人工智能AIGC
导言:普罗米修斯之火再现在科技演进的长河中,每一次生产力的跃迁都伴随着工具的质变。从蒸汽机轰鸣到电力普及,再到信息高速公路的铺就,人类驾驭能量的能力不断突破。今天,我们站在一个崭新的临界点上:大语言模型(LLM)正将人工智能的“普罗米修斯之火”引入软件开发的核心腹地。这不再仅仅是效率的优化,更是对开发者角色、开发流程乃至软件本质的深度重塑。GitHubCEOThomasDohmke曾断言:“Cop
- Python大数据分析&人工智能教程 - Django-RestFramework框架(深入解析+实操案例)
AI_DL_CODE
python数据分析djangoRestFramework框架
文章目录1.Django-RestFramework基础1.1Django-RestFramework概述1.2安装与配置1.3构建第一个API1.3.1定义模型1.3.2创建序列化器1.3.3定义视图1.3.4配置URL路由1.4进阶功能1.4.1权限控制1.4.2限流1.5实战案例1.5.1创建图书1.5.2查询图书1.5.3更新图书1.5.4删除图书2.序列化器(Serializers)2.
- Python从0到100完整学习指南(必看导航)
是Dream呀
Pythonpython人工智能爬虫web神经网络算法深度学习
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学业升学和工作就业的先行者!【优惠信息】•新专栏订阅前1000名享9.9元优惠•订阅量破10
- 【机器学习&深度学习】模型微调的基本概念与流程
一叶千舟
深度学习【理论】机器学习深度学习人工智能
目录前言一、什么是模型微调(Fine-tuning)?二、预训练vs微调:什么关系?三、微调的基本流程(以BERT为例)1️⃣准备数据2️⃣加载预训练模型和分词器3️⃣数据编码与加载4️⃣定义优化器5️⃣开始训练6️⃣评估与保存模型四、是否要冻结BERT层?五、完整训练示例代码5.1环境依赖5.2执行代码总结:微调的优势前言在自然语言处理(NLP)快速发展的今天,预训练模型如BERT成为了众多任务
- FastGPT与MCP:解锁AI新时代的技术密码
挑战者666888
AI模型应用实战迁移学习集成学习文心一言
一、AI浪潮中的新星:FastGPT与MCP登场在当今科技飞速发展的时代,人工智能(AI)已成为推动各行业变革的核心力量。从智能语音助手到复杂的图像识别系统,AI的应用无处不在,而其中的关键技术——语言模型和集成平台,更是备受关注。FastGPT和MCP(Multi-ComponentPlatform)作为这一领域的新兴代表,正逐渐崭露头角,为AI的发展注入新的活力。FastGPT,以其高效的推理
- 前沿技术推动机器人的智能化升级
AI天才研究院
AI大模型企业级应用开发实战AgenticAI实战AI人工智能与大数据机器人ai
前沿技术推动机器人的智能化升级关键词:机器人智能化、人工智能、机器学习、计算机视觉、自主导航、人机交互、边缘计算摘要:本文深入探讨了前沿技术如何推动机器人从传统自动化向智能化升级的演进过程。文章首先分析了机器人技术发展的历史脉络和当前挑战,然后详细阐述了人工智能、机器学习、计算机视觉等关键技术如何赋能机器人智能化。通过算法原理分析、数学模型构建和实际项目案例,展示了智能机器人的核心技术实现路径。最
- linux深度学习问题汇总
不想改代码
备忘录linuxpython深度学习pytorch人工智能1024程序员节
目录一、异常问题1.segementationfault(coredump)2.Illegalinstruction(coredumped)3.死锁4.掉卡二、通用方法1.查看重启记录2.系统性能监控3.后台执行命令4.异常日志三、深度学习技术1.普通网络改DDP训练,单机多卡,pytorch四、专业内容方法1.微调diffusion类模型本文记录一些在使用linux服务器进行深度学习时遇到的问题
- 提升首屏加载的秘密武器:一文讲透 CDN 加速核心逻辑
网罗开发
实战源码前端jsonjavascript
网罗开发(小红书、快手、视频号同名) 大家好,我是展菲,目前在上市企业从事人工智能项目研发管理工作,平时热衷于分享各种编程领域的软硬技能知识以及前沿技术,包括iOS、前端、HarmonyOS、Java、Python等方向。在移动端开发、鸿蒙开发、物联网、嵌入式、云原生、开源等领域有深厚造诣。图书作者:《ESP32-C3物联网工程开发实战》图书作者:《SwiftUI入门,进阶与实战》超级个体:CO
- 继之前的线程循环加到窗口中运行
3213213333332132
javathreadJFrameJPanel
之前写了有关java线程的循环执行和结束,因为想制作成exe文件,想把执行的效果加到窗口上,所以就结合了JFrame和JPanel写了这个程序,这里直接贴出代码,在窗口上运行的效果下面有附图。
package thread;
import java.awt.Graphics;
import java.text.SimpleDateFormat;
import java.util
- linux 常用命令
BlueSkator
linux命令
1.grep
相信这个命令可以说是大家最常用的命令之一了。尤其是查询生产环境的日志,这个命令绝对是必不可少的。
但之前总是习惯于使用 (grep -n 关键字 文件名 )查出关键字以及该关键字所在的行数,然后再用 (sed -n '100,200p' 文件名),去查出该关键字之后的日志内容。
但其实还有更简便的办法,就是用(grep -B n、-A n、-C n 关键
- php heredoc原文档和nowdoc语法
dcj3sjt126com
PHPheredocnowdoc
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Current To-Do List</title>
</head>
<body>
<?
- overflow的属性
周华华
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- 《我所了解的Java》——总体目录
g21121
java
准备用一年左右时间写一个系列的文章《我所了解的Java》,目录及内容会不断完善及调整。
在编写相关内容时难免出现笔误、代码无法执行、名词理解错误等,请大家及时指出,我会第一时间更正。
&n
- [简单]docx4j常用方法小结
53873039oycg
docx
本代码基于docx4j-3.2.0,在office word 2007上测试通过。代码如下:
import java.io.File;
import java.io.FileInputStream;
import ja
- Spring配置学习
云端月影
spring配置
首先来看一个标准的Spring配置文件 applicationContext.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi=&q
- Java新手入门的30个基本概念三
aijuans
java新手java 入门
17.Java中的每一个类都是从Object类扩展而来的。 18.object类中的equal和toString方法。 equal用于测试一个对象是否同另一个对象相等。 toString返回一个代表该对象的字符串,几乎每一个类都会重载该方法,以便返回当前状态的正确表示.(toString 方法是一个很重要的方法) 19.通用编程:任何类类型的所有值都可以同object类性的变量来代替。
- 《2008 IBM Rational 软件开发高峰论坛会议》小记
antonyup_2006
软件测试敏捷开发项目管理IBM活动
我一直想写些总结,用于交流和备忘,然都没提笔,今以一篇参加活动的感受小记开个头,呵呵!
其实参加《2008 IBM Rational 软件开发高峰论坛会议》是9月4号,那天刚好调休.但接着项目颇为忙,所以今天在中秋佳节的假期里整理了下.
参加这次活动是一个朋友给的一个邀请书,才知道有这样的一个活动,虽然现在项目暂时没用到IBM的解决方案,但觉的参与这样一个活动可以拓宽下视野和相关知识.
- PL/SQL的过程编程,异常,声明变量,PL/SQL块
百合不是茶
PL/SQL的过程编程异常PL/SQL块声明变量
PL/SQL;
过程;
符号;
变量;
PL/SQL块;
输出;
异常;
PL/SQL 是过程语言(Procedural Language)与结构化查询语言(SQL)结合而成的编程语言PL/SQL 是对 SQL 的扩展,sql的执行时每次都要写操作
- Mockito(三)--完整功能介绍
bijian1013
持续集成mockito单元测试
mockito官网:http://code.google.com/p/mockito/,打开documentation可以看到官方最新的文档资料。
一.使用mockito验证行为
//首先要import Mockito
import static org.mockito.Mockito.*;
//mo
- 精通Oracle10编程SQL(8)使用复合数据类型
bijian1013
oracle数据库plsql
/*
*使用复合数据类型
*/
--PL/SQL记录
--定义PL/SQL记录
--自定义PL/SQL记录
DECLARE
TYPE emp_record_type IS RECORD(
name emp.ename%TYPE,
salary emp.sal%TYPE,
dno emp.deptno%TYPE
);
emp_
- 【Linux常用命令一】grep命令
bit1129
Linux常用命令
grep命令格式
grep [option] pattern [file-list]
grep命令用于在指定的文件(一个或者多个,file-list)中查找包含模式串(pattern)的行,[option]用于控制grep命令的查找方式。
pattern可以是普通字符串,也可以是正则表达式,当查找的字符串包含正则表达式字符或者特
- mybatis3入门学习笔记
白糖_
sqlibatisqqjdbc配置管理
MyBatis 的前身就是iBatis,是一个数据持久层(ORM)框架。 MyBatis 是支持普通 SQL 查询,存储过程和高级映射的优秀持久层框架。MyBatis对JDBC进行了一次很浅的封装。
以前也学过iBatis,因为MyBatis是iBatis的升级版本,最初以为改动应该不大,实际结果是MyBatis对配置文件进行了一些大的改动,使整个框架更加方便人性化。
- Linux 命令神器:lsof 入门
ronin47
lsof
lsof是系统管理/安全的尤伯工具。我大多数时候用它来从系统获得与网络连接相关的信息,但那只是这个强大而又鲜为人知的应用的第一步。将这个工具称之为lsof真实名副其实,因为它是指“列出打开文件(lists openfiles)”。而有一点要切记,在Unix中一切(包括网络套接口)都是文件。
有趣的是,lsof也是有着最多
- java实现两个大数相加,可能存在溢出。
bylijinnan
java实现
import java.math.BigInteger;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
public class BigIntegerAddition {
/**
* 题目:java实现两个大数相加,可能存在溢出。
* 如123456789 + 987654321
- Kettle学习资料分享,附大神用Kettle的一套流程完成对整个数据库迁移方法
Kai_Ge
Kettle
Kettle学习资料分享
Kettle 3.2 使用说明书
目录
概述..........................................................................................................................................7
1.Kettle 资源库管
- [货币与金融]钢之炼金术士
comsci
金融
自古以来,都有一些人在从事炼金术的工作.........但是很少有成功的
那么随着人类在理论物理和工程物理上面取得的一些突破性进展......
炼金术这个古老
- Toast原来也可以多样化
dai_lm
androidtoast
Style 1: 默认
Toast def = Toast.makeText(this, "default", Toast.LENGTH_SHORT);
def.show();
Style 2: 顶部显示
Toast top = Toast.makeText(this, "top", Toast.LENGTH_SHORT);
t
- java数据计算的几种解决方法3
datamachine
javahadoopibatisr-languer
4、iBatis
简单敏捷因此强大的数据计算层。和Hibernate不同,它鼓励写SQL,所以学习成本最低。同时它用最小的代价实现了计算脚本和JAVA代码的解耦,只用20%的代价就实现了hibernate 80%的功能,没实现的20%是计算脚本和数据库的解耦。
复杂计算环境是它的弱项,比如:分布式计算、复杂计算、非数据
- 向网页中插入透明Flash的方法和技巧
dcj3sjt126com
htmlWebFlash
将
Flash 作品插入网页的时候,我们有时候会需要将它设为透明,有时候我们需要在Flash的背面插入一些漂亮的图片,搭配出漂亮的效果……下面我们介绍一些将Flash插入网页中的一些透明的设置技巧。
一、Swf透明、无坐标控制 首先教大家最简单的插入Flash的代码,透明,无坐标控制: 注意wmode="transparent"是控制Flash是否透明
- ios UICollectionView的使用
dcj3sjt126com
UICollectionView的使用有两种方法,一种是继承UICollectionViewController,这个Controller会自带一个UICollectionView;另外一种是作为一个视图放在普通的UIViewController里面。
个人更喜欢第二种。下面采用第二种方式简单介绍一下UICollectionView的使用。
1.UIViewController实现委托,代码如
- Eos平台java公共逻辑
蕃薯耀
Eos平台java公共逻辑Eos平台java公共逻辑
Eos平台java公共逻辑
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月1日 17:20:4
- SpringMVC4零配置--Web上下文配置【MvcConfig】
hanqunfeng
springmvc4
与SpringSecurity的配置类似,spring同样为我们提供了一个实现类WebMvcConfigurationSupport和一个注解@EnableWebMvc以帮助我们减少bean的声明。
applicationContext-MvcConfig.xml
<!-- 启用注解,并定义组件查找规则 ,mvc层只负责扫描@Controller -->
<
- 解决ie和其他浏览器poi下载excel文件名乱码
jackyrong
Excel
使用poi,做传统的excel导出,然后想在浏览器中,让用户选择另存为,保存用户下载的xls文件,这个时候,可能的是在ie下出现乱码(ie,9,10,11),但在firefox,chrome下没乱码,
因此必须综合判断,编写一个工具类:
/**
*
* @Title: pro
- 挥洒泪水的青春
lampcy
编程生活程序员
2015年2月28日,我辞职了,离开了相处一年的触控,转过身--挥洒掉泪水,毅然来到了兄弟连,背负着许多的不解、质疑——”你一个零基础、脑子又不聪明的人,还敢跨行业,选择Unity3D?“,”真是不自量力••••••“,”真是初生牛犊不怕虎•••••“,••••••我只是淡淡一笑,拎着行李----坐上了通向挥洒泪水的青春之地——兄弟连!
这就是我青春的分割线,不后悔,只会去用泪水浇灌——已经来到
- 稳增长之中国股市两点意见-----严控做空,建立涨跌停版停牌重组机制
nannan408
对于股市,我们国家的监管还是有点拼的,但始终拼不过飞流直下的恐慌,为什么呢?
笔者首先支持股市的监管。对于股市越管越荡的现象,笔者认为首先是做空力量超过了股市自身的升力,并且对于跌停停牌重组的快速反应还没建立好,上市公司对于股价下跌没有很好的利好支撑。
我们来看美国和香港是怎么应对股灾的。美国是靠禁止重要股票做空,在
- 动态设置iframe高度(iframe高度自适应)
Rainbow702
JavaScriptiframecontentDocument高度自适应局部刷新
如果需要对画面中的部分区域作局部刷新,大家可能都会想到使用ajax。
但有些情况下,须使用在页面中嵌入一个iframe来作局部刷新。
对于使用iframe的情况,发现有一个问题,就是iframe中的页面的高度可能会很高,但是外面页面并不会被iframe内部页面给撑开,如下面的结构:
<div id="content">
<div id=&quo
- 用Rapael做图表
tntxia
rap
function drawReport(paper,attr,data){
var width = attr.width;
var height = attr.height;
var max = 0;
&nbs
- HTML5 bootstrap2网页兼容(支持IE10以下)
xiaoluode
html5bootstrap
<!DOCTYPE html>
<html>
<head lang="zh-CN">
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">