Caddi Programming Contest 2021(AtCoder Beginner Contest 193)
打折浮点数除即可
枚举判断符合要求的求最小值即可
O ( n ) O(\sqrt{n}) O(n)枚举 a a a,暴力翻倍(最小的 2 2 2最多乘 32 32 32次就会超过 n n n的上限)
m a p map map存该数有没有被 a b a^b ab覆盖到,数量不会太多,不用担心 M L E MLE MLE
暴力枚举,计算情况。注意两个串选择同一数字时的小细节即可
#include
#include
#define int long long
#define maxn 20
int n;
char s[maxn], t[maxn];
int tot[maxn], cnt_s[maxn], cnt_t[maxn];
int calc( int x ) {
return x * ( x - 1 );
}
signed main() {
scanf( "%lld %s %s", &n, s + 1, t + 1 );
for( int i = 1;i <= 4;i ++ )
tot[s[i] - '0'] ++, tot[t[i] - '0'] ++;
int cnt = 0;
for( int i = 1;i <= 9;i ++ ) {
if( tot[i] == n ) continue;
for( int j = 1;j <= 9;j ++ ) {
if( ( tot[j] == n ) || ( i == j && tot[i] + 1 == n ) ) continue;
int sum_s = 0, sum_t = 0;
s[5] = i + '0', t[5] = j + '0';
for( int k = 1;k <= 5;k ++ )
cnt_s[s[k] - '0'] ++, cnt_t[t[k] - '0'] ++;
for( int k = 1;k <= 9;k ++ ) {
sum_s += k * pow( 10, cnt_s[k] );
sum_t += k * pow( 10, cnt_t[k] );
}
if( sum_s > sum_t ) {
if( i == j )
cnt += ( n - tot[i] ) * ( n - tot[i] - 1 );
else
cnt += ( n - tot[i] ) * ( n - tot[j] );
}
for( int k = 1;k <= 9;k ++ )
cnt_s[k] = cnt_t[k] = 0;
}
}
printf( "%.10f\n", cnt * 1.0 / ( calc( 9 * n - 8 ) ) );
return 0;
}
发现每段差都在500以内,暴力枚举相遇点
k 1 ∗ ( 2 X + 2 Y ) + X + i = k 2 ∗ ( P + Q ) + P + j ⇔ k 1 ∗ ( 2 X + 2 Y ) − k 2 ∗ ( P + Q ) = P − X + j − i k_1*(2X+2Y)+X+i=k_2*(P+Q)+P+j \Leftrightarrow k_1*(2X+2Y)-k_2*(P+Q)=P-X+j-i k1∗(2X+2Y)+X+i=k2∗(P+Q)+P+j⇔k1∗(2X+2Y)−k2∗(P+Q)=P−X+j−i
即扩欧, k 1 ′ ( 2 X + 2 Y ) + k 2 ′ ( P + Q ) = g c d ( 2 X + 2 Y , P + Q ) k_1'(2X+2Y)+k_2'(P+Q)=gcd(2X+2Y,P+Q) k1′(2X+2Y)+k2′(P+Q)=gcd(2X+2Y,P+Q)
有解必须满足 g c d ( 2 X + 2 Y , P + Q ) ∣ P − X + j − i gcd(2X+2Y,P+Q)|P-X+j-i gcd(2X+2Y,P+Q)∣P−X+j−i
扩欧求出的解不一定是非负最优解,扩倍(乘对方的倍数)成非负再取模变最优
#include
#include
using namespace std;
#define int __int128
int T, X, Y, P, Q;
void read( int &x ) {
x = 0; char s = getchar();
while( s < '0' || s > '9' ) s = getchar();
while( '0' <= s && s <= '9' ) {
x = ( x << 1 ) + ( x << 3 ) + ( s ^ 48 );
s = getchar();
}
}
void exgcd( int a, int b, int &d, int &x, int &y ) {
if( ! b ) d = a, x = 1, y = 0;
else {
exgcd( b, a % b, d, y, x );
y -= x * ( a / b );
}
}
void print( int x ) {
if( x > 9 ) print( x / 10 );
putchar( ( x % 10 ) + '0' );
}
signed main() {
read( T );
while( T -- ) {
read( X ), read( Y ), read( P ), read( Q );
int d, x, y, ans = 1e32;
exgcd( X * 2 + Y * 2, P + Q, d, x, y );
for( int i = 0;i < Y;i ++ )
for( int j = 0;j < Q;j ++ ) {
int c = P + j - X - i;
if( c % d ) continue;
int k1 = c / d * x;
int k2 = c / d * ( - y );
int mod1 = ( P + Q ) / d, mod2 = ( X * 2 + Y * 2 ) / d;
if( k1 < 0 ) {
int t = ( - k1 + mod1 - 1 ) / mod1;
k1 += mod1 * t, k2 += mod2 * t;
}
if( k2 < 0 ) {
int t = ( - k2 + mod2 - 1 ) / mod2;
k1 += mod1 * t, k2 += mod2 * t;
}
k1 %= mod1;
ans = min( ans, k1 * ( X * 2 + Y * 2 ) + X + i );
}
if( ans == 1e32 ) printf( "infinity\n" );
else print( ans ), putchar( '\n' );
}
return 0;
}
一般的这种相邻之间计算贡献都可以转换成最小割问题,考虑整体边数减去最小失去
如果相邻两个点是一样的颜色,则失去 1 1 1
但是这样根本无法在网络流上进行切割
所以考虑奇偶分开,天然分裂相邻块
翻转奇数块颜色,进行连边;固定颜色的最大可以流出 4 4 4,至于不确定的就根据相邻边选择
按颜色分给超级源点和超级汇点,大约是在 O ( n 3 ) O(n^3) O(n3)
#include
#include
#include
#include
using namespace std;
#define maxn 105
#define inf 0x7f7f7f7f
struct node {
int v, nxt, flow;
}edge[maxn * maxn * 30];
int n, cnt, s, t;
char ch[maxn][maxn];
int head[maxn * maxn], cur[maxn * maxn], dis[maxn * maxn];
queue < int > q;
void addEdge( int u, int v, int c ) {
edge[cnt].v = v;
edge[cnt].nxt = head[u];
edge[cnt].flow = c;
head[u] = cnt ++;
edge[cnt].v = u;
edge[cnt].nxt = head[v];
edge[cnt].flow = 0;
head[v] = cnt ++;
}
int id( int i, int j ) {
return ( i - 1 ) * n + j;
}
bool bfs() {
memset( dis, 0, sizeof( dis ) );
memcpy( cur, head, sizeof( head ) );
dis[s] = 1; q.push( s );
while( ! q.empty() ) {
int u = q.front(); q.pop();
for( int i = head[u];~ i;i = edge[i].nxt ) {
int v = edge[i].v;
if( ! dis[v] && edge[i].flow ) {
dis[v] = dis[u] + 1;
q.push( v );
}
}
}
return dis[t];
}
int dfs( int u, int cap ) {
if( u == t || ! cap ) return cap;
int flow = 0;
for( int i = cur[u];~ i;i = edge[i].nxt ) {
int v = edge[i].v; cur[u] = i;
if( dis[v] == dis[u] + 1 ) {
int w = dfs( v, min( cap, edge[i].flow ) );
if( ! w ) continue;
cap -= w;
flow += w;
edge[i].flow -= w;
edge[i ^ 1].flow += w;
if( ! cap ) break;
}
}
return flow;
}
int dinic() {
int ans = 0;
while( bfs() ) ans += dfs( s, inf );
return ans;
}
int main() {
memset( head, -1, sizeof( head ) );
scanf( "%d", &n );
for( int i = 1;i <= n;i ++ )
scanf( "%s", ch[i] + 1 );
for( int i = 1;i <= n;i ++ )
for( int j = 1;j <= n;j ++ )
if( ! ( ( i + j ) & 1 ) || ch[i][j] == '?' ) continue;
else ch[i][j] = 'B' + 'W' - ch[i][j];
s = 0, t = n * n + 1;
for( int i = 1;i <= n;i ++ )
for( int j = 1;j <= n;j ++ ) {
if( ch[i][j] == 'B' ) addEdge( s, id( i, j ), 4 );
if( ch[i][j] == 'W' ) addEdge( id( i, j ), t, 4 );
}
for( int i = 1;i <= n;i ++ )
for( int j = 1;j < n;j ++ ) {
addEdge( id( i, j ), id( i, j + 1 ), 1 );
addEdge( id( i, j + 1 ), id( i, j ), 1 );
}
for( int i = 1;i < n;i ++ )
for( int j = 1;j <= n;j ++ ) {
addEdge( id( i, j ), id( i + 1, j ), 1 );
addEdge( id( i + 1, j ), id( i, j ), 1 );
}
printf( "%d\n", 2 * n * ( n - 1 ) - dinic() );
return 0;
}