余弦定理的证明

三角形ABC 过A作 A D ⊥ B C AD \bot BC ADBC,如下图:

余弦定理的证明_第1张图片

同理可得:

e = a − f = a − b 2 − h 2 e = a - f= a - \sqrt{b^2 - h^2} e=af=ab2h2

e 2 = c 2 − h 2 e^2 = c^2 - h^2 e2=c2h2

即:
( a − b 2 − h 2 ) 2 = c 2 − h 2 → a 2 − 2 a b 2 − h 2 + b 2 − h 2 = c 2 − h 2 → b 2 − h 2 = ( a 2 + b 2 − c 2 2 a ) 2 → (a - \sqrt{b^2 - h^2} )^2 = c^2 - h^2 \rightarrow \\ a^2 -2a \sqrt{b^2 - h^2} + b^2 - h^2 = c^2 - h^2 \rightarrow \\ b^2 - h^2 = (\frac{a^2 + b^2 -c^2 }{2a})^2 \rightarrow (ab2h2 )2=c2h2a22ab2h2 +b2h2=c2h2b2h2=(2aa2+b2c2)2

h 2 = − a 4 + b 4 + c 4 − 2 a 2 b 2 − 2 a 2 c 2 − 2 b 2 c 2 4 a 2 h ^2=- \frac{a^4 + b^4 + c^4 - 2a^2b^2 - 2a^2c^2 - 2b^2c^2}{4a^2} h2=4a2a4+b4+c42a2b22a2c22b2c2

c o s B = e c = a − f c = a − b 2 − h 2 c = a − a 2 + b 2 − c 2 2 a c = a 2 + c 2 − b 2 2 a c cos B = \frac{e}{c} =\frac{a - f}{c} = \frac{a - \sqrt{b^2 - h^2}}{c} = \frac{a - \frac{a^2 + b^2 - c^2}{2a}}{c} = \frac{a^2 + c^2 - b^2}{2ac}\\ cosB=ce=caf=cab2h2 =ca2aa2+b2c2=2aca2+c2b2

你可能感兴趣的:(数学,学习)