费马小定理,876. 快速幂求逆元

876. 快速幂求逆元 - AcWing题库

给定 n 组 ai,pi,其中 pi 是质数,求 ai 模 pi 的乘法逆元,若逆元不存在则输出 impossible

注意:请返回在 0∼p−1 之间的逆元。

乘法逆元的定义

若整数 b,m 互质,并且对于任意的整数 a,如果满足 b|a,则存在一个整数 x,使得 a/b≡a×x(modm),则称 x 为 b 的模 m 乘法逆元,记为 b−1(modm)。

b 存在乘法逆元的充要条件是 b 与模数 m 互质。当模数 m 为质数时,bm−2 即为 b 的乘法逆元。

输入格式

第一行包含整数 n。

接下来 n 行,每行包含一个数组 ai,pi,数据保证 pi 是质数。

输出格式

输出共 n 行,每组数据输出一个结果,每个结果占一行。

若 ai 模 pi 的乘法逆元存在,则输出一个整数,表示逆元,否则输出 impossible

数据范围

1≤n≤105,
1≤ai,pi≤2∗109

输入样例:
3
4 3
8 5
6 3
输出样例:
1
2
impossible

 解析:

乘法逆元的定义

若整数 b,m 互质,并且对于任意的整数 a,如果满足 b|a(a能整除b),则存在一个整数 x,使得 a/b≡a×x(modm),则称 x 为 b 的模 m 乘法逆元,记为 b−1(modm)。

b 存在乘法逆元的充要条件是 b 与模数 m 互质。当模数 m 为质数时,bm−2 即为 b 的乘法逆元。

 更通俗的讲:

给你一个数 b ,找出一个 x ,使得 b*x≡1(mod m)b与m互质

根据定义:
a/b≡a*x(mod m)

我设 b 的逆元为 b^-1

则 a/b≡a*b^-1(mod m)

b*a/b≡a*b^-1*b(mod m)

a≡a*b^-1*b (mod m)

可表示为:b*b^-1≡1 (mod m)

所以逆元类似于乘法中的倒数

费马小定理

b^(p-1)≡1 (mod p)

则 b*b^(p-2)≡1 (mod p)

所以求一个数 b mod p  的逆元,只需要求出 b^(p-2) 即可

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;
typedef long long LL;
int a, p;

LL quickpow(LL x, LL y, LL mod) {
	LL t = a, ret = 1;
	while (y) {
		if (y & 1)ret = (ret * t) % mod;
		y >>= 1;
		t = (t * t) % mod;
	}
	return ret;
}

int main() {
	int n;
	scanf("%d", &n);
	while (n--) {
		scanf("%d%d", &a, &p);
		LL ret = quickpow(a,p-2,p);
		if (a % p)
			printf("%lld\n", ret);
		else
			printf("impossible\n");
	}
	return 0;
}

你可能感兴趣的:(数论,数学,算法,数论,逆元)