python信号处理教程_信号处理之功率谱原理与python实现

本教程为脑机学习者Rose原创(转载请联系作者授权)发表于公众号:脑机接口社区(微信号:Brain_Computer).QQ交流群:903290195

功率谱简介

功率谱图又叫功率谱密度图

功率谱是功率谱密度函数的简称,它定义为单位频带内的信号功率。它表示了信号功率随着频率的变化情况,即信号功率在频域的分布状况。

功率谱表示了信号功率随着频率的变化关系。常用于功率信号(区别于能量信号)的表述与分析,其曲线(即功率谱曲线)一般横坐标为频率,纵坐标为功率。由于功率没有负值,所以功率谱曲线上的纵坐标也没有负数值,功率谱曲线所覆盖的面积在数值上等于信号的总功率(能量)。

功率谱、能量谱、幅值谱之间的关系

知乎用户CrisYang对功率谱、能量谱、幅值谱之间的关系进行了详细的说明:

在频谱分析中幅度和功率是由紧密联系的两个不同的物理量:能量能表述为幅值的平方和,也能表述为功率在时间上的积分;功率谱密度,是指用密度的概念表示信号功率在各频率点的分布情况,是对随机变量均方值的量度,是单位频率的平均功率量纲;也就是说,对功率谱在频域上积分就可以得到信号的平均功率,而不是能量。能量谱密度是单位频率的幅值平方和量纲,能量谱密度曲线下面的面积才是这个信号的总能量。于是,功率谱、能量谱、幅值谱之间的紧密关系主要表述为:能量谱是功率谱密度函数在相位上的卷积,也是幅值谱密度函数的平方在频率上的积分;功率谱是信号自相关函数的傅里叶变换,能量谱是信号本身傅立叶变换幅度的平方。

功率谱python实现

from scipy.fftpack import fft, fftshift, ifft

from scipy.fftpack import fftfreq

import numpy as np

import matplotlib.pyplot as plt

import warnings

warnings.filterwarnings("ignore")

fs = 1000

#采样点数

num_fft = 1024;

"""

生成原始信号序列

在原始信号中加上噪声

np.random.randn(t.size)

"""

t = np.arange(0, 1, 1/fs)

f0 = 100

f1 = 200

x = np.cos(2*np.pi*f0*t) + 3*np.cos(2*np.pi*f1*t) + np.random.randn(t.size)

plt.figure(figsize=(15, 12))

ax=plt.subplot(511)

ax.set_title('original signal')

plt.tight_layout()

plt.plot(x)

"""

FFT(Fast Fourier Transformation)快速傅里叶变换

"""

Y = fft(x, num_fft)

Y = np.abs(Y)

ax=plt.subplot(512)

ax.set_title('fft transform')

plt.plot(20*np.log10(Y[:num_fft//2]))

"""

功率谱 power spectrum

直接平方

"""

ps = Y**2 / num_fft

ax=plt.subplot(513)

ax.set_title('direct method')

plt.plot(20*np.log10(ps[:num_fft//2]))

"""

相关功谱率 power spectrum using correlate

间接法

"""

cor_x = np.correlate(x, x, 'same')

cor_X = fft(cor_x, num_fft)

ps_cor = np.abs(cor_X)

ps_cor = ps_cor / np.max(ps_cor)

ax=plt.subplot(514)

ax.set_title('indirect method')

plt.plot(20*np.log10(ps_cor[:num_fft//2]))

plt.tight_layout()

plt.show()

脑机学习者Rose笔记分享,QQ交流群:903290195

更多分享,请关注公众号

你可能感兴趣的:(python信号处理教程)