Hudi第一章:编译安装
Hudi第二章:集成Spark
Hudi第二章:集成Spark(二)
Hudi第三章:集成Flink
之前的两次博客学习了hudi和spark的集成,现在我们来学习hudi和flink的集成。
vim /opt/module/flink-1.13.6/conf/flink-conf.yaml
直接在最后追加即可。
classloader.check-leaked-classloader: false
taskmanager.numberOfTaskSlots: 4
state.backend: rocksdb
execution.checkpointing.interval: 30000
state.checkpoints.dir: hdfs://hadoop102:8020/ckps
state.backend.incremental: true
sudo vim /etc/profile.d/my_env.sh
export HADOOP_CLASSPATH=`hadoop classpath`
export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop
source /etc/profile.d/my_env.sh
cp /opt/software/hudi-0.12.0/packaging/hudi-flink-bundle/target/hudi-flink1.13-bundle-0.12.0.jar /opt/module/flink-1.13.6/lib/
cp /opt/module/hadoop/share/hadoop/common/lib/guava-27.0-jre.jar /opt/module/flink-1.13.6/lib/
cp /opt/module/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-client-core-3.1.3.jar /opt/module/flink-1.13.6/lib/
/opt/module/flink-1.13.6/bin/yarn-session.sh -d
bin/sql-client.sh embedded -s yarn-session
启动成功后可以在web端看一下。
也可以跳转到flink的webui。
现在我们就可以在终端写代码了。
CREATE TABLE t1(
uuid VARCHAR(20) PRIMARY KEY NOT ENFORCED,
name VARCHAR(10),
age INT,
ts TIMESTAMP(3),
`partition` VARCHAR(20)
)
PARTITIONED BY (`partition`)
WITH (
'connector' = 'hudi',
'path' = 'hdfs://hadoop102:8020/tmp/hudi_flink/t1',
'table.type' = 'MERGE_ON_READ'
);
INSERT INTO t1 VALUES
('id1','Danny',23,TIMESTAMP '1970-01-01 00:00:01','par1'),
('id2','Stephen',33,TIMESTAMP '1970-01-01 00:00:02','par1'),
('id3','Julian',53,TIMESTAMP '1970-01-01 00:00:03','par2'),
('id4','Fabian',31,TIMESTAMP '1970-01-01 00:00:04','par2'),
('id5','Sophia',18,TIMESTAMP '1970-01-01 00:00:05','par3'),
('id6','Emma',20,TIMESTAMP '1970-01-01 00:00:06','par3'),
('id7','Bob',44,TIMESTAMP '1970-01-01 00:00:07','par4'),
('id8','Han',56,TIMESTAMP '1970-01-01 00:00:08','par4');
我们先更改一下表格式,默认的看得可能不习惯。
set sql-client.execution.result-mode=tableau;
select * from t1;
前面说过hudi的更新操作就是插入一条主键相同的新数据,由更新的ts来覆盖旧的。
insert into t1 values
('id1','Danny',27,TIMESTAMP '1970-01-02 00:00:01','par1');
flink最常用的还是流式数据的处理。
CREATE TABLE sourceT (
uuid varchar(20),
name varchar(10),
age int,
ts timestamp(3),
`partition` varchar(20)
) WITH (
'connector' = 'datagen',
'rows-per-second' = '1'
);
create table t2(
uuid varchar(20),
name varchar(10),
age int,
ts timestamp(3),
`partition` varchar(20)
)
with (
'connector' = 'hudi',
'path' = '/tmp/hudi_flink/t2',
'table.type' = 'MERGE_ON_READ'
);
我们创建两张表,第一张的连接器是datagen可以用来流式的生产数据。第二张表是正常的hudi表。
insert into t2 select * from sourceT;
我们可以在webui看一下。
因为是流式处理,所以这个进程是不会停止的。
select * from t2 limit 10;
我们需要将编译好的一个包拉到本地。
然后将他倒入maven仓库
mvn install:install-file -DgroupId=org.apache.hudi -DartifactId=hudi-flink_2.12 -Dversion=0.12.0 -Dpackaging=jar -Dfile=./hudi-flink1.13-bundle-0.12.0.jar
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.atguigu.hudi</groupId>
<artifactId>flink-hudi-demo</artifactId>
<version>1.0-SNAPSHOT</version>
<properties>
<maven.compiler.source>8</maven.compiler.source>
<maven.compiler.target>8</maven.compiler.target>
<flink.version>1.13.6</flink.version>
<hudi.version>0.12.0</hudi.version>
<java.version>1.8</java.version>
<scala.binary.version>2.12</scala.binary.version>
<slf4j.version>1.7.30</slf4j.version>
</properties>
<dependencies>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-java</artifactId>
<version>${flink.version}</version>
<scope>provided</scope> <!--不会打包到依赖中,只参与编译,不参与运行 -->
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-java_${scala.binary.version}</artifactId>
<version>${flink.version}</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-clients_${scala.binary.version}</artifactId>
<version>${flink.version}</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-table-planner-blink_${scala.binary.version}</artifactId>
<version>${flink.version}</version>
<scope>provided</scope>
</dependency>
<!--idea运行时也有webui-->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-runtime-web_${scala.binary.version}</artifactId>
<version>${flink.version}</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-api</artifactId>
<version>${slf4j.version}</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-log4j12</artifactId>
<version>${slf4j.version}</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.apache.logging.log4j</groupId>
<artifactId>log4j-to-slf4j</artifactId>
<version>2.14.0</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-statebackend-rocksdb_${scala.binary.version}</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>3.1.3</version>
<scope>provided</scope>
</dependency>
<!--手动install到本地maven仓库-->
<dependency>
<groupId>org.apache.hudi</groupId>
<artifactId>hudi-flink_2.12</artifactId>
<version>${hudi.version}</version>
<scope>provided</scope>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-shade-plugin</artifactId>
<version>3.2.4</version>
<executions>
<execution>
<phase>package</phase>
<goals>
<goal>shade</goal>
</goals>
<configuration>
<artifactSet>
<excludes>
<exclude>com.google.code.findbugs:jsr305</exclude>
<exclude>org.slf4j:*</exclude>
<exclude>log4j:*</exclude>
<exclude>org.apache.hadoop:*</exclude>
</excludes>
</artifactSet>
<filters>
<filter>
<!-- Do not copy the signatures in the META-INF folder.
Otherwise, this might cause SecurityExceptions when using the JAR. -->
<artifact>*:*</artifact>
<excludes>
<exclude>META-INF/*.SF</exclude>
<exclude>META-INF/*.DSA</exclude>
<exclude>META-INF/*.RSA</exclude>
</excludes>
</filter>
</filters>
<transformers combine.children="append">
<transformer implementation="org.apache.maven.plugins.shade.resource.ServicesResourceTransformer">
</transformer>
</transformers>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>
</project>
HudiDemo.java
一个简单的流式数据处理和刚刚一样。
package com.atguigu.hudi.flink;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.contrib.streaming.state.EmbeddedRocksDBStateBackend;
import org.apache.flink.contrib.streaming.state.PredefinedOptions;
import org.apache.flink.streaming.api.CheckpointingMode;
import org.apache.flink.streaming.api.environment.CheckpointConfig;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import java.util.concurrent.TimeUnit;
public class HudiDemo {
public static void main(String[] args) {
System.setProperty("HADOOP_USER_NAME", "atguigu");
StreamExecutionEnvironment env = StreamExecutionEnvironment.createLocalEnvironmentWithWebUI(new Configuration());
// 设置状态后端RocksDB
EmbeddedRocksDBStateBackend embeddedRocksDBStateBackend = new EmbeddedRocksDBStateBackend(true);
embeddedRocksDBStateBackend.setDbStoragePath("/home/chaoge/Downloads/hudi");
embeddedRocksDBStateBackend.setPredefinedOptions(PredefinedOptions.SPINNING_DISK_OPTIMIZED_HIGH_MEM);
env.setStateBackend(embeddedRocksDBStateBackend);
// checkpoint配置
env.enableCheckpointing(TimeUnit.SECONDS.toMillis(30), CheckpointingMode.EXACTLY_ONCE);
CheckpointConfig checkpointConfig = env.getCheckpointConfig();
checkpointConfig.setCheckpointStorage("hdfs://hadoop102:8020/ckps");
checkpointConfig.setMinPauseBetweenCheckpoints(TimeUnit.SECONDS.toMillis(20));
checkpointConfig.setTolerableCheckpointFailureNumber(5);
checkpointConfig.setCheckpointTimeout(TimeUnit.MINUTES.toMillis(1));
checkpointConfig.enableExternalizedCheckpoints(CheckpointConfig.ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION);
StreamTableEnvironment sTableEnv = StreamTableEnvironment.create(env);
sTableEnv.executeSql("CREATE TABLE sourceT (\n" +
" uuid varchar(20),\n" +
" name varchar(10),\n" +
" age int,\n" +
" ts timestamp(3),\n" +
" `partition` varchar(20)\n" +
") WITH (\n" +
" 'connector' = 'datagen',\n" +
" 'rows-per-second' = '1'\n" +
")");
sTableEnv.executeSql("create table t2(\n" +
" uuid varchar(20),\n" +
" name varchar(10),\n" +
" age int,\n" +
" ts timestamp(3),\n" +
" `partition` varchar(20)\n" +
")\n" +
"with (\n" +
" 'connector' = 'hudi',\n" +
" 'path' = 'hdfs://hadoop102:8020/tmp/hudi_idea/t2',\n" +
" 'table.type' = 'MERGE_ON_READ'\n" +
")");
sTableEnv.executeSql("insert into t2 select * from sourceT");
}
}
当我们运行的时候,可以再本地webui查看。
127.0.0.1:8081/
也可以在hdfs路径看一下。
flink第一次就先写到这里剩下的还要在写一次。