- 深度解析:venv和conda如何解决依赖冲突难题
咕咕日志
condapython
文章目录前言一、虚拟环境的核心价值1.1依赖冲突的典型场景1.2隔离机制实现原理二、venv与conda的架构对比2.1工具定位差异2.2性能基准测试(以创建环境+安装numpy为例)三、venv的配置与最佳实践3.1基础工作流3.2多版本Python管理四、conda的进阶应用4.1环境创建与通道配置4.2混合使用conda与pip的风险控制4.3跨平台环境导出五、工具选型决策树5.1场景化推荐
- MyChrome.exe与Selenium联动避坑指南:User Data目录冲突解决方案
龙潜月七
selenium测试工具
在自动化测试与网络数据采集场景中,MyChrome.exe与Selenium的联动能发挥强大作用,但二者的UserData目录配置若处理不当,易引发冲突。下面我将重点围绕该问题,详细阐述联动的注意事项。MyChrome.exe与Selenium联动避坑指南:UserData目录冲突解决方案在自动化测试与网络数据采集的领域中,MyChrome.exe与Selenium的组合常常是开发者的得力助手。M
- Pushgateway扩展Prometheus监控
ivwdcwso
运维与云原生prometheusk8s云原生
Pushgateway是Prometheus生态系统中的一个重要组件,它允许我们将短期作业或批处理任务的指标推送到Prometheus中。本文将详细介绍如何安装、配置和使用Pushgateway来扩展Prometheus监控。1.Pushgateway简介Pushgateway主要用于解决以下场景:短期作业无法被Prometheus直接抓取批处理任务需要推送指标防火墙后的应用需要主动推送指标它作为
- 【Spring】Spring 全局异常处理
九师兄
bootjavaspringbootspring全局异常
文章目录1.概述2.全局异常处理2.1.HandlerExceptionResolver接口2.2.使用示例2.3.Controller局部异常处理2.3.1.使用示例2.3.2.一个问题2.4.ControllerAdvice2.41.使用示例2.4.2.控制生效的Controller范围2.5新案例2.5.1异常捕获2.5.2示例服务2.5.3测试说明3.总结1.概述在具体的SSM项目开发中,
- CppCon 2015 学习:Beyond Sanitizers
虾球xz
CppCon学习c++开发语言
Sanitizers,一类基于编译时插桩(instrumentation)的动态测试工具,用来检测程序运行时的各种错误。Sanitizers简介基于编译时插桩:编译器在编译代码时自动插入检测代码。动态运行时检测:程序运行时实时检查错误。常见类型:ASan(AddressSanitizer):检测内存相关错误,如越界访问、使用后释放(Use-After-Free)、内存泄漏等。UBSan(Undef
- STM32 开发笔记:从环境搭建到任务调度
嵌入式的小萌新
stm32笔记嵌入式硬件
今天体验了一把augment确实好用,记录一下STM32开发笔记:从环境搭建到任务调度️环境准备必需工具STM32CubeMX:图形化配置工具,用于初始化MCU外设和生成基础代码STM32CubeCLT:包含编译工具链(arm-none-eabi-gcc)和烧录工具(STM32_Programmer_CLI)CMake:跨平台构建系统,用于管理项目编译流程OpenOCD:开源调试器(可选,用于DA
- 【Prometheus】通过tar包部署单机版Prometheus 和 Pushgateway
在ECS(ElasticComputeService)机器上通过tar包部署Prometheus和Pushgateway,并配置Prometheus采集Pushgateway的数据,是一个常见的监控部署任务。以下是详细的步骤说明:环境准备操作系统:Linux(如CentOS、Ubuntu)已安装tar命名已开通ECS实例的相应端口(9090forPrometheus,9091forPushgate
- 【机器学习笔记 Ⅱ】10 完整周期
机器学习的完整生命周期(End-to-EndPipeline)机器学习的完整周期涵盖从问题定义到模型部署的全过程,以下是系统化的步骤分解和关键要点:1.问题定义(ProblemDefinition)目标:明确业务需求与机器学习任务的匹配性。关键问题:这是分类、回归、聚类还是强化学习问题?成功的标准是什么?(如准确率>90%、降低10%成本)输出:项目目标文档(含评估指标)。2.数据收集(DataC
- Esim:简化业务复杂度的Golang业务框架
周琰策Scott
Esim:简化业务复杂度的Golang业务框架esim微服务应用框架项目地址:https://gitcode.com/gh_mirrors/esi/esim项目介绍Esim是一款专注于解决业务复杂度、测试、代码组织和扩展等问题的Golang业务框架。它不提供微服务整套技术体系,如服务治理、服务注册、服务发现等,而是将这些交给了ServiceMesh。Esim默认集成了gin和grpc两个技术框架,
- “试验台铁地板:优越的选择高性能铁地板材料“
试验台铁地板的特点试验台铁地板通常采用高强度铸铁或合金材料制成,具有高稳定性、耐磨性和抗变形能力。其表面经过精密加工,确保平面度和平行度符合高精度测试需求。部分产品还会进行防锈处理,延长使用寿命。高性能铁地板的材料选择常见的材料包括HT250铸铁、球墨铸铁或特殊合金钢。HT250铸铁具有良好的吸震性和耐磨性,适合精密仪器测试;球墨铸铁强度更高,适用于重型设备试验台;特殊合金钢则用于极端环境下的高负
- CALayer的异步处理
在iOS开发中,实现**CALayer**的异步处理是优化性能的关键技术,尤其对于复杂绘制或需要高性能渲染的场景。以下是完整实现方案:一、异步绘制核心架构设置异步绘制标志触发display创建异步任务执行绘制生成CGImage设置contents主线程CALayer实现displayLayer:方法全局队列CoreGraphics绘制主线程回调二、完整实现代码1.自定义异步图层//AsyncLay
- 未来数据库硬件-网络篇
数据库云计算架构
本文在绿泡泡“狗哥琐话”首发于2025.2.17<-关注不走丢。最近看到一篇不错的文章,叫做“ModernHardwareforFutureDatabases”,里面从几个方向讲了下现在数据库的硬件发展趋势,今天先来说说网络篇。内容中,一位大佬对(获过图灵奖的大佬)OLTP系统进行了一些基准测试,发现TCP-IP协议栈对于总体CPU使用率是占在47~68%。如果使用的网络带宽增加,这个开销还会提升
- 这是gpt o1给出的物联网工程专业的大学规划,有人看看这个合理吗?
王倚山
gpt物联网学习开发语言
下面是一份更为详细、覆盖全年(包括寒暑假)的四阶段学习规划,旨在帮助你在大学剩余时间里持续学习、循序渐进地掌握物联网(IoT)核心技能,打造深厚的技术壁垒。每个阶段都有明确的学习目标与自学内容细节,并在寒暑假安排了“强化期”任务,让你全年不停歇,不断提升。总体思路稳扎稳打:从嵌入式基础到RTOS、传感器驱动、通信协议,再到边缘计算、云平台、工业协议、安全攻防,层层深入。项目驱动:每个阶段至少完成1
- Python知识点:如何使用memory_profiler进行内存分析
开篇,先说一个好消息,截止到2025年1月1日前,翻到文末找到我,赠送定制版的开题报告和任务书,先到先得!过期不候!如何使用memory_profiler进行Python代码内存分析在开发高性能的Python应用程序时,理解和优化内存使用是至关重要的。memory_profiler是一个强大的工具,它可以帮助你监控Python代码的内存使用情况。本文将介绍如何使用memory_profiler来分
- 分布式压测
活跃家族
性能分布式
1.扩展:启动java项目,nohup生成文件写入项目相关输出信息,包括日志信息。想要看的话可以监听这个文件:tail-f,cat查看文件等。1、做性能测试,为什么要用分布式?1、机器的端口数量有限,在发发起请求的时候,端口不够用,无法发起访问,端口消耗完,解决:增加端口数量,增加机器,分布式压测修改系统参数,端口数量扩大,修改注册表,但是一般不做长链接改为短链接2、分布式原理:1、一台机器主控机
- 9、并行计算在现代计算中的应用与优化
seed
探索并行计算与HPC新范式并行计算高性能计算大数据分析
并行计算在现代计算中的应用与优化1.引言并行计算作为一种高效的计算模式,近年来在工业和学术界得到了广泛的应用和发展。随着计算需求的不断增加,传统的串行计算模式已经难以满足现代复杂问题的需求。并行计算通过将计算任务分解为多个子任务,并在多个处理单元上同时执行,从而显著提高了计算效率。本文将探讨并行计算在现代计算中的应用与优化,重点介绍并行计算的基本原理、应用场景和技术细节。2.并行计算的基本原理并行
- Abaqus许可价格高,项目组如何合理调度资源?
在大型制造企业、科研机构或工程服务公司中,Abaqus已成为结构非线性分析与多物理场仿真的首选平台之一。它能够处理复杂接触、塑性变形、大变形、断裂、复合材料等高难度问题,尤其适合航空航天、汽车碰撞、精密工程等领域的计算模拟。但同时,Abaqus的模块价格昂贵、资源调度复杂,特别是在多个项目组并行使用的环境下,频繁出现:仿真任务排队、许可冲突;模块占用严重、使用不透明;项目间“抢资源”,效率低下;如
- 定时器和守护线程
(八)定时器标准库中的定时器标准库中提供了一个Timer类。Timer类的核心方法为schedule,schedule包含两个参数:第⼀个参数指定即将要执行的任务代码,第⼆个参数指定多长时间之后执行(单位为毫秒)。Timertimer=newTimer();timer.schedule(newTimerTask(){@Overridepublicvoidrun(){System.out.print
- TCP的三次握手和四次挥手:原理与过程详解
在互联网高速发展的今天,网络通信已经成为我们日常生活和工作中不可或缺的一部分。而在众多网络协议中,传输控制协议(TransmissionControlProtocol,TCP)作为互联网协议族的核心协议之一,承担着保障网络通信可靠性的重要任务。TCP协议通过其精心设计的连接管理机制,确保了数据传输的可靠性、有序性和完整性,为上层应用提供了稳定的通信基础。TCP是一种面向连接的、可靠的、基于字节流的
- 大语言模型原理基础与前沿 基于语言反馈进行微调
AI天才研究院
计算AI大模型企业级应用开发实战AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理基础与前沿基于语言反馈进行微调作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来随着深度学习技术的飞速发展,自然语言处理(NLP)领域取得了显著的进展。大语言模型(LargeLanguageModels,LLMs)如GPT-3、BERT等在各项NLP任务上取得了令人瞩目的成绩。然而,如何进一步提高大语言模型的理
- Python实例题:基于 Python 的简单文件管理器
狐凄
实例python开发语言前端
目录Python实例题题目要求:解题思路:代码实现:Python实例题题目基于Python的简单文件管理器要求:使用Python构建一个简单的文件管理器,支持以下功能:浏览文件和目录创建、删除、重命名文件和目录复制、移动文件和目录查看文件属性和内容搜索文件和目录使用tkinter构建图形用户界面。支持基本的文件操作权限检查。解题思路:使用os和shutil模块进行文件操作。通过tkinter构建用
- 顶点着色器:3D世界的魔法化妆师
你一身傲骨怎能输
计算机图形学着色器
摘要顶点着色器是3D图形渲染中的关键组件,负责将3D模型中的顶点数据转换为2D屏幕坐标,并传递颜色、法线、纹理等属性。它通过坐标变换、属性传递和动画变形等功能,使角色和场景动态化,如角色骨骼动画、水面波动和旗帜飘动等。顶点着色器在渲染管线中处于第一站,与其他着色器(如几何着色器和片元着色器)协作,共同完成复杂的图形渲染任务。通过优化计算和合理分配顶点数量,顶点着色器能够高效处理大量数据,广泛应用于
- 常见构建工具使用与原理浅析
1.初版构建工具1.1.GruntGrunt是前端第一个正式的构建工具,它基于Node.js开发。Grunt同样是基于插件实现功能拓展增强,但对于像Webpack上很多能力,如HMR、ScopeHoisting等都是不支持的,可以作为学习Webpack前的了解。Grunt更像是一种自动化的配置工具集,就如官方所说,Grunt是TheJavaScriptTaskRunner,每个Grunt任务通常必
- 408考研逐题详解:2010年第18题——CPU寄存器
2010年第18题下列寄存器中,汇编语言程序员可见的是()A.存储器地址寄存器(MAR)\qquadB.程序计数器(PC)\qquadC.存储器数据寄存器(MDR)\qquadD.指令寄存器(IR)解析本题考查的是计算机组成原理中关于CPU寄存器的分类及其可见性,特别是汇编语言程序员的视角。存储器地址寄存器(MAR,MemoryAddressRegister):用于存储CPU即将访问的内存地址(如
- 408考研逐题详解:2010年第17题——内存的地址转换和数据访问
CS创新实验室
考研复习408考研计算机408考研真题计算机考研
2010年第17题下列命中组合情况中,一次访存过程中不可能发生的是()A.TLB未命中,Cache未命中,Page未命中B.TLB未命中,Cache命中,Page命中C.TLB命中,Cache未命中,Page命中D.TLB命中,Cache命中,Page未命中解析本题考查计算机组成原理中主存管理相关的知识点,特别是虚拟内存系统中的地址转换和数据访问流程。题目要求判断在TLB(TranslationL
- 告别等等等我的大三奇遇记一款让代码飞起来的秘密武器(1750039621223600)
Github项目推荐
rust前端开发语言编程后端java计算机
作为一名计算机科学与技术专业的大三学生,我总感觉自己的编程之路充满了“等等等”。编译项目要等,运行测试要等,尤其是在处理一些涉及网络请求和高并发的课程设计时,那慢吞吞的响应速度,简直让我怀疑人生。室友们也常常抱怨,咱们写的这些“玩具”项目,怎么就这么卡呢?直到一次偶然的机会,我接触到了一款堪称“黑科技”的框架,它彻底颠覆了我对Web后端开发的认知,让我的代码第一次有了“起飞”的感觉。这篇“奇遇记”
- 四种微调技术详解:SFT 监督微调、LoRA 微调、P-tuning v2、Freeze 监督微调方法
当谈到人工智能大语言模型的微调技术时,我们进入了一个令人兴奋的领域。这些大型预训练模型,如GPT-3、BERT和T5,拥有卓越的自然语言处理能力,但要使它们在特定任务上表现出色,就需要进行微调,以使其适应特定的数据和任务需求。在这篇文章中,我们将深入探讨四种不同的人工智能大语言模型微调技术:SFT监督微调、LoRA微调方法、P-tuningv2微调方法和Freeze监督微调方法。第一部分:SFT监
- c++ python 共享内存
qianbo_insist
音视频和c++java物联网c++c++python开发语言
一、目的是为了c++来读取并解码传递给python,Python做测试非常方便,c++和python之间必须定好协议,整体使用c++来解码,共享内存传递给python二、主类主类,串联decoder,注意decoder并没有直接在显存里面穿透,是解码以后传递给内存,从内存传给python#pragmaonce#define__STDC_CONSTANT_MACROS#defineSDL_MAIN_
- 使用 Bank Churn 数据集进行二元分类
一、前言分类任务:预测客户是继续使用其帐户还是关闭帐户(例如,流失)项目地址:https://www.kaggle.com/competitions/playground-series-s4e1二、具体步骤(一)数据导入与预览importpandasaspdimportnumpyasnpimportmatplotlib.pylabaspltimportseabornassnsfromsklearn
- Longformer: The Long-Document Transformer(2020-4-10)
不负韶华ღ
深度学习(NLP)transformer深度学习人工智能
模型介绍目前基于Transformer的预训练模型在各项NLP任务纷纷取得更好的效果,这些成功的部分原因在于Self-Attention机制,它运行模型能够快速便捷地从整个文本序列中捕获重要信息。然而传统的Self-Attention机制的时空复杂度与文本的序列长度呈平方的关系,这在很大程度上限制了模型的输入不能太长,因此需要将过长的文档进行截断传入模型进行处理,例如BERT中能够接受的最大序列长
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc