- 网络学习记录4
Tic..
网络知识专栏网络
二、学习网络安全知识:1、常见的网络攻击:①口令入侵:攻击者使用某些合法用户的帐号和口令登录到目的主机,然后再实施攻击活动。这种方法的前提是必须先得到该主机上的某个合法用户的帐号,然后再进行合法用户口令的破译。②跨站脚本攻击(XSS):主要采用脚本语言设计的计算机病毒,现在流行的脚本病毒大都是利用JavaScript和VBScript脚本语言编写。攻击者通过在网页中插入恶意脚本,当用户浏览该网页时
- 数据结构学习记录-数据结构概念
墨楠。
#C语言数据结构研习汇数据结构学习
1数据结构:数据结构是计算机存储,管理数据的方式。数据必须依据某种逻辑联系组织在一起存储在计算机内数据结构研究的就是这种数据的存储结构和数据的逻辑结构。1.1数据的逻辑结构:逻辑结构指的是数据本身之间的关系集合:数据元素除了属于同一个集合外,没有其他联系;线性关系:数据元素之间呈现的是一对一的关系;树型:数据元素之间呈现的是一对多的关系;图型(网状):数据元素之间呈现的是多对多的关系;1.2数据的
- 网络学习记录2
Tic..
网络知识专栏网络
一、复习网络基础知识(基础&少量&持续):1、巩固OSPF协议:①OSPF按工作区域分类,分为IGP(InteriorGatewayProtocols内部网关)和EGP(ExteriorGatewayProtocols外部网关),按照工作机制及算法分类,分为(DistanceVectorRoutingProtocols距离矢量路由协议)和(Link-StateRoutingProtocols链路状
- 短期气候Python绘图——欧亚遥相关指数以及站点数据绘图
安载寿
python开发语言
一、要求计算EU(欧亚)遥相关指数,输出1月份该指数年际变化的时间序列;计算EU遥相关指数与同期环流场(500hPa高度场或海平面气压场)的相关系数;计算EU遥相关指数与同期我国气温的相关系数。二、资料说明(1)格点资料NCEP/NCAR1948-2012年(65年)的500百帕月平均高度场资料资料范围为(900S-900N,00-3600E)网格距为2.50×2.50,纬向格点数为144,经向格
- 频域增强通道注意力机制EFCAM模型详解及代码复现
呆头鹅AI工作室
深度学习算法详解及代码复现深度学习人工智能神经网络condapython
背景与动机在深度学习领域,如何有效处理时间序列数据一直是一个重要的研究方向。近年来,频域分析技术在时间序列处理中展现出了巨大潜力,特别是离散余弦变换(DCT)因其能够高效捕捉低频信息并避免高频噪声干扰而受到广泛关注。FECAM模型的开发正是基于这一背景,旨在结合频域分析和通道注意力机制,以提高模型对时间序列数据的特征提取和表示能力。通过这种创新方法,FECAM模型能够更有效地捕捉时间序列中的关键特
- <论文>如何将RAG和时序大模型相结合?
CM莫问
文献简录人工智能深度学习算法时间序列RAG大模型
一、摘要本文介绍论文发表于2024年的论文《RetrievalAugmentedTimeSeriesForecasting》,该论文提出了将RAG技术应用于时序大模型的策略,提升了时序大模型的性能。译文:检索增强生成(RAG)是现代大型语言模型系统的核心组件,特别是在需要最新信息以准确响应用户查询或查询超出训练数据范围的情况下。时间序列基础模型(TSFM)的出现,如Chronos,以及在各种时间序
- 大数据学习记录,Java基础(3)
灵敏的迅捷蟹
大数据学习java
面向对象面向对象的特征:封装随着系统越来越复杂,类会越来越多,那么类之间的访问边界必须把握好,面向对象的开发原则要遵循“高内聚、低耦合”,而“高内聚,低耦合”的体现之一:高内聚:类的内部数据操作细节自己完成,不允许外部干涉;低耦合:仅暴露少量的方法给外部使用,尽量方便外部调用封装可以认为是一个保护屏障,防止该类的代码和数据被其他类随意访问,加强了代码的安全性。隐藏对象内部的复杂性,只对外公开简单和
- 深度学习每周学习总结R4(LSTM-实现糖尿病探索与预测)
大地之灯
每周深度学习总结深度学习学习lstm人工智能算法
本文为365天深度学习训练营中的学习记录博客R6中的内容,为了便于自己整理总结起名为R4原作者:K同学啊|接辅导、项目定制目录0.总结1.LSTM介绍LSTM的基本组成部分如何理解与应用LSTM2.数据预处理3.数据集构建4.定义模型5.初始化模型及优化器6.训练函数7.测试函数8.训练过程9.模型评估0.总结数据导入及处理部分:在PyTorch中,我们通常先将NumPy数组转换为torch.Te
- MongoDB 8.0已全面可用
全球广受欢迎的文档型数据库MongoDB目前最新最强的版本,在易用性、企业级安全性、弹性、可用性等方面均有大幅提升,适用于各种应用程序。MongoDB8.0的优化使整体吞吐量提高了32%,时间序列数据聚合的处理速度提高了200%以上。MongoDB8.0的新扩展功能,使数据分发速度提高了50倍,单分片集群成本降低了50%,实现了高效的扩展性。MongoDB8.0扩展了业界首创的可查询加密功能,可在
- 回溯 Leetcode 332 重新安排行程
mmaerd
Leetcode刷题学习记录leetcode算法职场和发展
重新安排行程Leetcode332学习记录自代码随想录给你一份航线列表tickets,其中tickets[i]=[fromi,toi]表示飞机出发和降落的机场地点。请你对该行程进行重新规划排序。所有这些机票都属于一个从JFK(肯尼迪国际机场)出发的先生,所以该行程必须从JFK开始。如果存在多种有效的行程,请你按字典排序返回最小的行程组合。例如,行程[“JFK”,“LGA”]与[“JFK”,“LGB
- 2024年华为杯数学建模研赛C题思路代码+论文助攻
DS数模
2024华为杯数学建模华为2024华为杯2024研究生数学建模2024研赛
2024年华为杯研究生数学建模竞赛(以下简研赛)将于9月21日上午8时正式开始。下文包含:2024研赛思路解析、研赛参赛时间及规则信息说明、好用的数模技巧及如何备战数学建模竞赛C君将会第一时间发布选题建议、所有题目的思路解析、相关代码、参考文献、参考论文等多项资料,帮助大家取得好成绩。2024年研赛将于9月21日上午8时正式开始这里有些资料,大家可以看看:【2024最全国赛研赛数模资料包】C君珍贵
- SQLite的入门级项目学习记录(二)
深蓝海拓
SQLite学习笔记sqlite学习数据库
再补充一些基础知识:并行操作的问题1、可以多游标同时运行SQLite,对于同一个连接sqlite3.connect(db_file),可以同时创建多个游标,每个游标都是独立的,可以执行各自的SQL命令序列。importsqlite3#创建数据库连接conn=sqlite3.connect('example.db')#创建第一个游标cursor1=conn.cursor()cursor1.execu
- Apache HBase基础(基本概述,物理架构,逻辑架构,数据管理,架构特点,HBase Shell)
May--J--Oldhu
HBaseHBaseshellhbase物理架构hbase逻辑架构hbase
NoSQL综述及ApacheHBase基础一.HBase1.HBase概述2.HBase发展历史3.HBase应用场景3.1增量数据-时间序列数据3.2信息交换-消息传递3.3内容服务-Web后端应用程序3.4HBase应用场景示例4.ApacheHBase生态圈5.HBase物理架构5.1HMaster5.2RegionServer5.3Region和Table6.HBase逻辑架构-Row7.
- 数据分析-24-时间序列预测之基于keras的VMD-LSTM和VMD-CNN-LSTM预测风速
皮皮冰燃
数据分析数据分析
文章目录1普通的LSTM模型1.1数据重采样1.2数据标准化1.3切分窗口1.4划分数据集1.5建立模型1.6预测效果2VMD-LSTM模型2.1VMD分解时间序列2.2对每一个IMF建立LSTM模型2.2.1IMF1—LSTM2.2.2IMF2-LSTM2.2.3统一代码2.3评估效果3CNN-LSTM模型3.1数据预处理3.2建立模型3.3效果预测4VMD-CNN-LSTM模型4.1VMD分解
- Prometheus运维六 PromQL查询语言详解及操作
安顾里
Prometheus监控类大数据kubernetes运维linux
海阔凭鱼跃,天高任鸟飞Prometheus官网:https://prometheus.io/文章目录1.什么是PromQL?2.PromQL的基本使用2.1时间序列选择器2.1.1瞬时向量选择器2.2区间向量选择器2.2.1范围向量选择器2.2.2时间位移操作2.2.3使用聚合操作2.3标量和字符串3.PromQL操作符4.内置常用函数5.HTTPAPI操作PromQL6.使用建议1.什么是Pro
- 基于Prometheus和Grafana的现代服务器监控体系构建
golove666
运维prometheusgrafana服务器
构建一个基于Prometheus和Grafana的现代服务器监控体系涉及多个步骤。以下是大体的流程和步骤说明:1.Prometheus监控系统Prometheus是一个开源的系统监控和报警工具,专门设计用于抓取时间序列数据。1.1Prometheus的安装Docker安装Prometheusdockerrun-d--name=prometheus-p9090:9090prom/prometheus
- 数学建模、运筹学之非线性规划
AgentSmart
算法学习算法动态规划线性代数线性规划
数学建模、运筹学之非线性规划一、最优化问题理论体系二、梯度下降法——无约束非线性规划三、牛顿法——无约束非线性规划四、只包含等值约束的拉格朗日乘子法五、不等值约束非线性规划与KKT条件一、最优化问题理论体系最优化问题旨在寻找全局最优值(或为最大值,或为最小值)。最优化问题一般可以分为两个部分:目标函数与约束条件。该问题的进一步细分也是根据这两部分的差异。最优化问题根据变量的取值范围不同可以划分为一
- VLSI电路单元的自动布局:全局布局基础介绍
Jaaiko
数学建模算法开源图论matlab
2024年华数杯全国大学生数学建模竞赛B题为:VLSI电路单元的自动布局。本题主要关注的是全局布局问题。学术界针对全局布局的评估模型和优化方法的研究历史悠久。本文借题顺势介绍全局布局的一些重点基础内容和相关工具/资料,以期为对EDA算法设计领域感兴趣、对数学建模感兴趣的人降低研究门槛。VLSI是超大规模集成电路的简称。完成一个VLSI设计的流程十分复杂,包含多种数据格式的转化,其中将逻辑网表转变为
- 平滑法时间序列模型原理及Python实践
AI智博信息
数据分析与挖掘python人工智能
平滑法时间序列模型原理主要涉及通过一定的算法对时间序列数据进行平滑处理,以消除或减弱数据中的随机波动和噪声,从而揭示出数据中的长期趋势和季节性变化,进而对未来数据进行预测。以下是平滑法时间序列模型的详细原理:一、基本原理平滑法时间序列模型基于对历史数据的平滑处理,通过对数据的平均或加权平均,去除数据中的随机波动,使得时间序列数据更加平滑,便于分析和预测。这种方法能够帮助我们更好地理解数据的长期趋势
- Pandas教程:详解Pandas数据清洗
旦莫
PythonPandaspythonpandas数据分析
目录1.引言2.Pandas基础2.1安装与导入2.2创建一个复杂的DataFrame3.数据清洗流程3.1处理缺失值3.1.1删除缺失值3.1.2填充缺失值3.2数据去重3.3数据类型转换4.数据处理与变换4.1添加与删除列4.2数据排序5.数据分组与聚合6.其他数据清洗方法6.1字符串处理6.2时间序列处理6.3数据类型转换1.引言数据清洗是数据科学和数据分析中的一个重要步骤,旨在提升数据的质
- RISC-V架构生态及相关学习记录
我朝山海而去
risc-v学习
从网络整理,仅供自己学习_____________________________________________________________________________1.RISC-V架构的两个特性RISC-V,第五代精简指令处理器。RISC-V指令集,可以在理解上类比于主流商用Inter的x86,ARM的指令集,用于CPU读取、翻译从而指挥计算机进行相应操作。它在RISC(基于精简指令
- python数学建模--非线性规划
diudiu_aaa
数学建模python算法
1.从线性规划到非线性规划本系列的开篇我们介绍了线性规划(LinearProgramming)并延伸到整数规划、0-1规划,以及相对复杂的固定费用问题、选址问题。这些问题的共同特点是,目标函数与约束条件都是线性函数。如果目标函数或约束条件中包含非线性函数,则是非线性规划。通常,非线性问题都比线性问题复杂得多,困难得多,非线性规划也是这样。非线性规划没有统一的通用方法、算法来解决,各种方法都有特定的
- 数学建模笔记——动态规划
liangbm3
数学建模笔记数学建模笔记动态规划python背包问题算法优化问题
数学建模笔记——动态规划动态规划1.模型原理2.典型例题2.1例1凑硬币2.2例2背包问题3.python代码实现3.1例13.2例2动态规划1.模型原理动态规划是运筹学的一个分支,通常用来解决多阶段决策过程最优化问题。动态规划的基本想法就是将原问题转换为一系列相互联系的子问题,然后通过逐层地推来求得最后的解。目前,动态规划常常出现在各类计算机算法竞赛或者程序员笔试面试中,在数学建模中出现的相对较
- 时序预测|基于粒子群优化支持向量机的时间序列预测Matlab程序PSO-SVM 单变量和多变量 含基础模型
机器不会学习CL
智能优化算法时间序列预测支持向量机matlab算法
时序预测|基于粒子群优化支持向量机的时间序列预测Matlab程序PSO-SVM单变量和多变量含基础模型文章目录一、基本原理1.问题定义2.数据准备3.SVM模型构建4.粒子群优化(PSO)5.优化与模型训练6.模型评估与预测7.流程总结8.MATLAB实现概述二、实验结果三、核心代码四、代码获取五、总结时序预测|基于粒子群优化支持向量机的时间序列预测Matlab程序PSO-SVM单变量和多变量含基
- 数学建模笔记—— 非线性规划
liangbm3
数学建模笔记数学建模笔记pythonmatlab非线性规划算法学习优化问题
数学建模笔记——非线性规划非线性规划1.模型原理1.1非线性规划的标准型1.2非线性规划求解的Matlab函数2.典型例题3.matlab代码求解3.1例1一个简单示例3.2例2选址问题1.第一问线性规划2.第二问非线性规划非线性规划非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。20世纪50年代初,库哈(H.W.Kuhn)和托克(A.W.T
- 保研 比赛 利器: 用AI比赛助手降维打击数学建模
好家伙VCC
杂谈杂谈数学建模人工智能
数学建模作为一个热门但又具有挑战性的赛道,在保研、学分加分、简历增色等方面具有独特优势。近年来,随着AI技术的发展,特别是像GPT-4模型的应用,数学建模的比赛变得不再那么“艰深”。通过利用AI比赛助手,不仅可以大大提升团队效率,还能有效提高比赛获奖几率。本文将详细介绍如何通过AI比赛助手完成数学建模比赛,并结合实例展示其强大功能。一、AI比赛助手的引入1.什么是AI比赛助手?AI比赛助手是一种集
- 英语心得1
小坤的梦呓
姑且这段学习记录的名字就这么叫吧。现在看了很多学习方面的经验分享,自己也在实践当中。正如贾兄在经验分享中看到的那样,学习英语而不是学习知识。英语是语言,语言是用来说的,既然要说语言,那必然要从听开始。很多原理和道理也不细说了,这个还需要学习很久。我现在要做的就是根据这些经验和自己的感悟去学习,然后加以改进方法,提高学习效率。现在也有给自己定了一个短期的小目标,争取年底或明年初可以考过雅思。至少达到
- 数学建模——Box-Cox变换
Desire.984
Python数学建模数学建模python
用途:当某个随机变量XXX不服从正态分布的时候,可以尝试通过这种变换将其变成正态分布。两个常用的变换对数变换:已知随机变量XXX,如果有lnX∼N(μ,σ2)\lnX\simN(\mu,\sigma^2)lnX∼N(μ,σ2),那么对XXX使用对数变换。适合随着自变量的增加,因变量的方差也增大的模型。平方根变换:已知随机变量XXX,如果有X∼N(μ,σ2)\sqrtX\simN(\mu,\sig
- Python 数学建模——方差分析
Desire.984
Python数学建模数学建模python概率论
文章目录前言单因素方差分析原理核心代码双因素方差分析数学模型分析依据典型代码前言 方差分析也是概率论中非常重要的内容,有时数学建模需要用到。方差分析是干什么的?如果说假设检验用于分析两个总体之间的均值μ1,μ2\mu_1,\mu_2μ1,μ2是否存在显著的差别,那么方差分析就是分析两个以上总体之间的均值是否存在显著的差别。单因素方差分析用途:已知一个量AAA可能会影响XXX,AAA的不同取值可能
- R语言自学笔记-2内置数据集
实验室长工
#b站视频——R语言入门与数据分析#内置数据集#固定格式的数据(矩阵、数据框或一个时间序列等)#统计建模、回归分析等试验需要找合适的数据集#R内置数据集,存储在,通过help(package="datasets")#通过data函数访问这些数据集data()#得到新窗口前面:数据集名字后面:内容#包含R所有用到的数据类型,包括:向量、矩阵、列表、因子、数据框以及时间序列等#直接输入数据集的名字就可
- ios内付费
374016526
ios内付费
近年来写了很多IOS的程序,内付费也用到不少,使用IOS的内付费实现起来比较麻烦,这里我写了一个简单的内付费包,希望对大家有帮助。
具体使用如下:
这里的sender其实就是调用者,这里主要是为了回调使用。
[KuroStoreApi kuroStoreProductId:@"产品ID" storeSender:self storeFinishCallBa
- 20 款优秀的 Linux 终端仿真器
brotherlamp
linuxlinux视频linux资料linux自学linux教程
终端仿真器是一款用其它显示架构重现可视终端的计算机程序。换句话说就是终端仿真器能使哑终端看似像一台连接上了服务器的客户机。终端仿真器允许最终用户用文本用户界面和命令行来访问控制台和应用程序。(LCTT 译注:终端仿真器原意指对大型机-哑终端方式的模拟,不过在当今的 Linux 环境中,常指通过远程或本地方式连接的伪终端,俗称“终端”。)
你能从开源世界中找到大量的终端仿真器,它们
- Solr Deep Paging(solr 深分页)
eksliang
solr深分页solr分页性能问题
转载请出自出处:http://eksliang.iteye.com/blog/2148370
作者:eksliang(ickes) blg:http://eksliang.iteye.com/ 概述
长期以来,我们一直有一个深分页问题。如果直接跳到很靠后的页数,查询速度会比较慢。这是因为Solr的需要为查询从开始遍历所有数据。直到Solr的4.7这个问题一直没有一个很好的解决方案。直到solr
- 数据库面试题
18289753290
面试题 数据库
1.union ,union all
网络搜索出的最佳答案:
union和union all的区别是,union会自动压缩多个结果集合中的重复结果,而union all则将所有的结果全部显示出来,不管是不是重复。
Union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序;
Union All:对两个结果集进行并集操作,包括重复行,不进行排序;
2.索引有哪些分类?作用是
- Android TV屏幕适配
酷的飞上天空
android
先说下现在市面上TV分辨率的大概情况
两种分辨率为主
1.720标清,分辨率为1280x720.
屏幕尺寸以32寸为主,部分电视为42寸
2.1080p全高清,分辨率为1920x1080
屏幕尺寸以42寸为主,此分辨率电视屏幕从32寸到50寸都有
适配遇到问题,已1080p尺寸为例:
分辨率固定不变,屏幕尺寸变化较大。
如:效果图尺寸为1920x1080,如果使用d
- Timer定时器与ActionListener联合应用
永夜-极光
java
功能:在控制台每秒输出一次
代码:
package Main;
import javax.swing.Timer;
import java.awt.event.*;
public class T {
private static int count = 0;
public static void main(String[] args){
- Ubuntu14.04系统Tab键不能自动补全问题解决
随便小屋
Ubuntu 14.04
Unbuntu 14.4安装之后就在终端中使用Tab键不能自动补全,解决办法如下:
1、利用vi编辑器打开/etc/bash.bashrc文件(需要root权限)
sudo vi /etc/bash.bashrc
接下来会提示输入密码
2、找到文件中的下列代码
#enable bash completion in interactive shells
#if
- 学会人际关系三招 轻松走职场
aijuans
职场
要想成功,仅有专业能力是不够的,处理好与老板、同事及下属的人际关系也是门大学问。如何才能在职场如鱼得水、游刃有余呢?在此,教您简单实用的三个窍门。
第一,多汇报
最近,管理学又提出了一个新名词“追随力”。它告诉我们,做下属最关键的就是要多请示汇报,让上司随时了解你的工作进度,有了新想法也要及时建议。不知不觉,你就有了“追随力”,上司会越来越了解和信任你。
第二,勤沟通
团队的力
- 《O2O:移动互联网时代的商业革命》读书笔记
aoyouzi
读书笔记
移动互联网的未来:碎片化内容+碎片化渠道=各式精准、互动的新型社会化营销。
O2O:Online to OffLine 线上线下活动
O2O就是在移动互联网时代,生活消费领域通过线上和线下互动的一种新型商业模式。
手机二维码本质:O2O商务行为从线下现实世界到线上虚拟世界的入口。
线上虚拟世界创造的本意是打破信息鸿沟,让不同地域、不同需求的人
- js实现图片随鼠标滚动的效果
百合不是茶
JavaScript滚动属性的获取图片滚动属性获取页面加载
1,获取样式属性值
top 与顶部的距离
left 与左边的距离
right 与右边的距离
bottom 与下边的距离
zIndex 层叠层次
例子:获取左边的宽度,当css写在body标签中时
<div id="adver" style="position:absolute;top:50px;left:1000p
- ajax同步异步参数async
bijian1013
jqueryAjaxasync
开发项目开发过程中,需要将ajax的返回值赋到全局变量中,然后在该页面其他地方引用,因为ajax异步的原因一直无法成功,需将async:false,使其变成同步的。
格式:
$.ajax({ type: 'POST', ur
- Webx3框架(1)
Bill_chen
eclipsespringmaven框架ibatis
Webx是淘宝开发的一套Web开发框架,Webx3是其第三个升级版本;采用Eclipse的开发环境,现在支持java开发;
采用turbine原型的MVC框架,扩展了Spring容器,利用Maven进行项目的构建管理,灵活的ibatis持久层支持,总的来说,还是一套很不错的Web框架。
Webx3遵循turbine风格,velocity的模板被分为layout/screen/control三部
- 【MongoDB学习笔记五】MongoDB概述
bit1129
mongodb
MongoDB是面向文档的NoSQL数据库,尽量业界还对MongoDB存在一些质疑的声音,比如性能尤其是查询性能、数据一致性的支持没有想象的那么好,但是MongoDB用户群确实已经够多。MongoDB的亮点不在于它的性能,而是它处理非结构化数据的能力以及内置对分布式的支持(复制、分片达到的高可用、高可伸缩),同时它提供的近似于SQL的查询能力,也是在做NoSQL技术选型时,考虑的一个重要因素。Mo
- spring/hibernate/struts2常见异常总结
白糖_
Hibernate
Spring
①ClassNotFoundException: org.aspectj.weaver.reflect.ReflectionWorld$ReflectionWorldException
缺少aspectjweaver.jar,该jar包常用于spring aop中
②java.lang.ClassNotFoundException: org.sprin
- jquery easyui表单重置(reset)扩展思路
bozch
formjquery easyuireset
在jquery easyui表单中 尚未提供表单重置的功能,这就需要自己对其进行扩展。
扩展的时候要考虑的控件有:
combo,combobox,combogrid,combotree,datebox,datetimebox
需要对其添加reset方法,reset方法就是把初始化的值赋值给当前的组件,这就需要在组件的初始化时将值保存下来。
在所有的reset方法添加完毕之后,就需要对fo
- 编程之美-烙饼排序
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
/*
*《编程之美》的思路是:搜索+剪枝。有点像是写下棋程序:当前情况下,把所有可能的下一步都做一遍;在这每一遍操作里面,计算出如果按这一步走的话,能不能赢(得出最优结果)。
*《编程之美》上代码有很多错误,且每个变量的含义令人费解。因此我按我的理解写了以下代码:
*/
- Struts1.X 源码分析之ActionForm赋值原理
chenbowen00
struts
struts1在处理请求参数之前,首先会根据配置文件action节点的name属性创建对应的ActionForm。如果配置了name属性,却找不到对应的ActionForm类也不会报错,只是不会处理本次请求的请求参数。
如果找到了对应的ActionForm类,则先判断是否已经存在ActionForm的实例,如果不存在则创建实例,并将其存放在对应的作用域中。作用域由配置文件action节点的s
- [空天防御与经济]在获得充足的外部资源之前,太空投资需有限度
comsci
资源
这里有一个常识性的问题:
地球的资源,人类的资金是有限的,而太空是无限的.....
就算全人类联合起来,要在太空中修建大型空间站,也不一定能够成功,因为资源和资金,技术有客观的限制....
&
- ORACLE临时表—ON COMMIT PRESERVE ROWS
daizj
oracle临时表
ORACLE临时表 转
临时表:像普通表一样,有结构,但是对数据的管理上不一样,临时表存储事务或会话的中间结果集,临时表中保存的数据只对当前
会话可见,所有会话都看不到其他会话的数据,即使其他会话提交了,也看不到。临时表不存在并发行为,因为他们对于当前会话都是独立的。
创建临时表时,ORACLE只创建了表的结构(在数据字典中定义),并没有初始化内存空间,当某一会话使用临时表时,ORALCE会
- 基于Nginx XSendfile+SpringMVC进行文件下载
denger
应用服务器Webnginx网络应用lighttpd
在平常我们实现文件下载通常是通过普通 read-write方式,如下代码所示。
@RequestMapping("/courseware/{id}")
public void download(@PathVariable("id") String courseID, HttpServletResp
- scanf接受char类型的字符
dcj3sjt126com
c
/*
2013年3月11日22:35:54
目的:学习char只接受一个字符
*/
# include <stdio.h>
int main(void)
{
int i;
char ch;
scanf("%d", &i);
printf("i = %d\n", i);
scanf("%
- 学编程的价值
dcj3sjt126com
编程
发一个人会编程, 想想以后可以教儿女, 是多么美好的事啊, 不管儿女将来从事什么样的职业, 教一教, 对他思维的开拓大有帮助
像这位朋友学习:
http://blog.sina.com.cn/s/articlelist_2584320772_0_1.html
VirtualGS教程 (By @林泰前): 几十年的老程序员,资深的
- 二维数组(矩阵)对角线输出
飞天奔月
二维数组
今天在BBS里面看到这样的面试题目,
1,二维数组(N*N),沿对角线方向,从右上角打印到左下角如N=4: 4*4二维数组
{ 1 2 3 4 }
{ 5 6 7 8 }
{ 9 10 11 12 }
{13 14 15 16 }
打印顺序
4
3 8
2 7 12
1 6 11 16
5 10 15
9 14
13
要
- Ehcache(08)——可阻塞的Cache——BlockingCache
234390216
并发ehcacheBlockingCache阻塞
可阻塞的Cache—BlockingCache
在上一节我们提到了显示使用Ehcache锁的问题,其实我们还可以隐式的来使用Ehcache的锁,那就是通过BlockingCache。BlockingCache是Ehcache的一个封装类,可以让我们对Ehcache进行并发操作。其内部的锁机制是使用的net.
- mysqldiff对数据库间进行差异比较
jackyrong
mysqld
mysqldiff该工具是官方mysql-utilities工具集的一个脚本,可以用来对比不同数据库之间的表结构,或者同个数据库间的表结构
如果在windows下,直接下载mysql-utilities安装就可以了,然后运行后,会跑到命令行下:
1) 基本用法
mysqldiff --server1=admin:12345
- spring data jpa 方法中可用的关键字
lawrence.li
javaspring
spring data jpa 支持以方法名进行查询/删除/统计。
查询的关键字为find
删除的关键字为delete/remove (>=1.7.x)
统计的关键字为count (>=1.7.x)
修改需要使用@Modifying注解
@Modifying
@Query("update User u set u.firstna
- Spring的ModelAndView类
nicegege
spring
项目中controller的方法跳转的到ModelAndView类,一直很好奇spring怎么实现的?
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* yo
- 搭建 CentOS 6 服务器(13) - rsync、Amanda
rensanning
centos
(一)rsync
Server端
# yum install rsync
# vi /etc/xinetd.d/rsync
service rsync
{
disable = no
flags = IPv6
socket_type = stream
wait
- Learn Nodejs 02
toknowme
nodejs
(1)npm是什么
npm is the package manager for node
官方网站:https://www.npmjs.com/
npm上有很多优秀的nodejs包,来解决常见的一些问题,比如用node-mysql,就可以方便通过nodejs链接到mysql,进行数据库的操作
在开发过程往往会需要用到其他的包,使用npm就可以下载这些包来供程序调用
&nb
- Spring MVC 拦截器
xp9802
spring mvc
Controller层的拦截器继承于HandlerInterceptorAdapter
HandlerInterceptorAdapter.java 1 public abstract class HandlerInterceptorAdapter implements HandlerIntercep