目录
前言
独立按键实验
矩阵按键实验
IO 扩展(串转并)-74HC595实验
LED 点阵实验
LED点阵点亮一个点
LED点阵点亮数字
LED点阵点亮图像
直流电机实验
步进电机实验
总结
基于普中单片机对51单片机进行学习
注:本篇笔记主要参考了普中单片机开发文档
按键管脚两端距离长的表示默认是导通状态,距离短的默认是断开状态, 如果按键按下,初始导通状态变为断开,初始断开状态变为导通。
#include "reg52.h"
typedef unsigned int u16; //对系统默认数据类型进行重定义
typedef unsigned char u8;
//定义独立按键控制脚
sbit KEY1=P3^1;
sbit KEY2=P3^0;
sbit KEY3=P3^2;
sbit KEY4=P3^3;
//定义 LED1 控制脚
sbit LED1=P2^0;
//使用宏定义独立按键按下的键值
#define KEY1_PRESS 1
#define KEY2_PRESS 2
#define KEY3_PRESS 3
#define KEY4_PRESS 4
#define KEY_UNPRESS 0
void delay_10us(u16 ten_us)
{
while(ten_us--);
}
u8 key_scan(u8 mode)
{
static u8 key=1;
if(mode)key=1;//连续扫描按键
if(key==1&&(KEY1==0||KEY2==0||KEY3==0||KEY4==0))//任意按键按下
{
delay_10us(1000);//消抖
key=0;
if(KEY1==0)
return KEY1_PRESS;
else if(KEY2==0)
return KEY2_PRESS;
else if(KEY3==0)
return KEY3_PRESS;
else if(KEY4==0)
return KEY4_PRESS;
}
else if(KEY1==1&&KEY2==1&&KEY3==1&&KEY4==1) //无按键按下
{
key=1;
}
return KEY_UNPRESS;
}
void main()
{
u8 key=0;
while(1)
{
key=key_scan(0);
if(key==KEY1_PRESS)//检测按键 K1 是否按下
LED1=!LED1;//LED1 状态翻转
}
}
解析:
#include "reg52.h"
typedef unsigned int u16; //对系统默认数据类型进行重定义
typedef unsigned char u8;
#define KEY_MATRIX_PORT P1 //使用宏定义矩阵按键控制口
#define SMG_A_DP_PORT P0 //使用宏定义数码管段码口
//共阴极数码管显示 0~F 的段码数据
u8 gsmg_code[17]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,
0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71};
void delay_10us(u16 ten_us)
{
while(ten_us--);
}
u8 key_matrix_ranks_scan(void)
{
u8 key_value=0;
KEY_MATRIX_PORT=0xf7;//给第一列赋值 0,其余全为 1
if(KEY_MATRIX_PORT!=0xf7)//判断第一列按键是否按下
{
delay_10us(1000);//消抖
switch(KEY_MATRIX_PORT)//保存第一列按键按下后的键值
{
case 0x77: key_value=1;break;
case 0xb7: key_value=5;break;
case 0xd7: key_value=9;break;
case 0xe7: key_value=13;break;
}
}
while(KEY_MATRIX_PORT!=0xf7);//等待按键松开
KEY_MATRIX_PORT=0xfb;//给第二列赋值 0,其余全为 1
if(KEY_MATRIX_PORT!=0xfb)//判断第二列按键是否按下
{
delay_10us(1000);//消抖
switch(KEY_MATRIX_PORT)//保存第二列按键按下后的键值
{
case 0x7b: key_value=2;break;
case 0xbb: key_value=6;break;
case 0xdb: key_value=10;break;
case 0xeb: key_value=14;break;
}
}
while(KEY_MATRIX_PORT!=0xfb);//等待按键松开
KEY_MATRIX_PORT=0xfd;//给第三列赋值 0,其余全为 1
if(KEY_MATRIX_PORT!=0xfd)//判断第三列按键是否按下
{
delay_10us(1000);//消抖
switch(KEY_MATRIX_PORT)//保存第三列按键按下后的键值
{
case 0x7d: key_value=3;break;
case 0xbd: key_value=7;break;
case 0xdd: key_value=11;break;
case 0xed: key_value=15;break;
}
}
while(KEY_MATRIX_PORT!=0xfd);//等待按键松开
KEY_MATRIX_PORT=0xfe;//给第四列赋值 0,其余全为 1
if(KEY_MATRIX_PORT!=0xfe)//判断第四列按键是否按下
{
delay_10us(1000);//消抖
switch(KEY_MATRIX_PORT)//保存第四列按键按下后的键值
{
case 0x7e: key_value=4;break;
case 0xbe: key_value=8;break;
case 0xde: key_value=12;break;
case 0xee: key_value=16;break;
}
}
while(KEY_MATRIX_PORT!=0xfe);//等待按键松开
return key_value;
}
void main()
{
u8 key=0;
while(1)
{
key=key_matrix_ranks_scan();
if(key!=0)
SMG_A_DP_PORT=gsmg_code[key-1];//得到的按键值减 1 换算成数组下标
对应 0-F 段码
}
}
解析:通过key_matrix_ranks_scan按键扫描函数利用行列式扫描原理用for循环判断哪个按键被按下并返回,在主函数中通过判断按键的值来将按键按下的值换算成数码管数组的下标从而显示0~F。
线翻转法实现
原理:两次if和switch语句,先找到列或行低电平后,翻转列或行再测量低电平判断是哪个按键被按下。
代码
#include "reg52.h"
typedef unsigned int u16; //对系统默认数据类型进行重定义
typedef unsigned char u8;
#define KEY_MATRIX_PORT P1 //使用宏定义矩阵按键控制口
#define SMG_A_DP_PORT P0 //使用宏定义数码管段码口
//共阴极数码管显示 0~F 的段码数据
u8 gsmg_code[17]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,
0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71};
void delay_10us(u16 ten_us)
{
while(ten_us--);
}
u8 key_matrix_flip_scan(void)
{
static u8 key_value=0;
KEY_MATRIX_PORT=0x0f;//给所有行赋值 0,列全为 1
if(KEY_MATRIX_PORT!=0x0f)//判断按键是否按下
{
delay_10us(1000);//消抖
if(KEY_MATRIX_PORT!=0x0f)
{
//测试列
KEY_MATRIX_PORT=0x0f;
switch(KEY_MATRIX_PORT)//保存行为 0,按键按下后的列值
{
case 0x07: key_value=1;break;
case 0x0b: key_value=2;break;
case 0x0d: key_value=3;break;
case 0x0e: key_value=4;break;
}
//测试行
KEY_MATRIX_PORT=0xf0;
switch(KEY_MATRIX_PORT)//保存列为 0,按键按下后的键值
{
case 0x70: key_value=key_value;break;
case 0xb0: key_value=key_value+4;break;
case 0xd0: key_value=key_value+8;break;
case 0xe0: key_value=key_value+12;break;
}
while(KEY_MATRIX_PORT!=0xf0);//等待按键松开
}
else
key_value=0;
return key_value;
}
void main()
{
u8 key=0;
while(1)
{
key=key_matrix_ranks_scan();
if(key!=0)
SMG_A_DP_PORT=gsmg_code[key-1];//得到的按键值减 1 换算成数组下标
对应 0-F 段码
}
}
解析:通过key_matrix_flip_scan函数利用线翻转式原理设置两次if switch进行扫描获取返回值,在主函数中通过判断按键的值来将按键按下的值换算成数码管数组的下标从而显示0~F。
#include "reg52.h"
typedef unsigned int u16; //对系统默认数据类型进行重定义
typedef unsigned char u8;
//定义 74HC595 控制管脚
sbit SRCLK=P3^6; //移位寄存器时钟输入
sbit RCLK=P3^5; //存储寄存器时钟输入
sbit SER=P3^4; //串行数据输入
#define LEDDZ_COL_PORT P0 //点阵列控制端口
u8 ghc595_buf[8]={0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80};
void delay_10us(u16 ten_us)
{
while(ten_us--);
}
void delay_ms(u16 ms)
{
u16 i,j;
for(i=ms;i>0;i--)
for(j=110;j>0;j--);
}
void hc595_write_data(u8 dat)
{
u8 i=0;
for(i=0;i<8;i++)//循环 8 次即可将一个字节写入寄存器中
{
SER=dat>>7;//优先传输一个字节中的高位
dat<<=1;//将低位移动到高位
SRCLK=0;
delay_10us(1);
SRCLK=1;
delay_10us(1);//移位寄存器时钟上升沿将端口数据送入寄存器中
}
RCLK=0;
delay_10us(1);
RCLK=1;//存储寄存器时钟上升沿将前面写入到寄存器的数据输出
}
void main()
{
u8 i=0;
LEDDZ_COL_PORT=0x00;//将 LED 点阵列全部设置为 0,即 LED 阴极为低电平
while(1)
{
for(i=0;i<8;i++)
{
hc595_write_data(0x00);//消除前面寄存器缓存数据
hc595_write_data(ghc595_buf[i]);//写入新的数据
delay_ms(500);//延时 500ms
}
}
}
解析:
#include "reg51.h"
typedef unsigned int u16; //对系统默认数据类型进行重定义
typedef unsigned char u8;
//定义74HC595控制管脚
sbit SRCLK=P3^6; //移位寄存器时钟输入
sbit RCLK=P3^5; //存储寄存器时钟输入
sbit SER=P3^4; //串行数据输入
#define LEDDZ_COL_PORT P0 //点阵列控制端口
void delay_10us(u16 ten_us)
{
while(ten_us--);
}
void hc595_write_data(u8 dat)
{
u8 i=0;
for(i=0;i<8;i++)//循环8次即可将一个字节写入寄存器中
{
SER=dat>>7;//优先传输一个字节中的高位
dat<<=1;//将低位移动到高位
SRCLK=0;
delay_10us(1);
SRCLK=1;
delay_10us(1);//移位寄存器时钟上升沿将端口数据送入寄存器中
}
RCLK=0;
delay_10us(1);
RCLK=1;//存储寄存器时钟上升沿将前面写入到寄存器的数据输出
}
void main()
{
u8 i=0;
LEDDZ_COL_PORT=0x7f;//将LED点阵左边第一列设置为0,即LED阴极为低电平,其余列为1,即高电平
while(1)
{
hc595_write_data(0x80);//将LED点阵上边第一行设置为1,即LED阳极为高电平,其余行为0,即低电平
}
}
解析:
将第一个点对应的行为高电平,列为低电平即可。也就是让 74HC595 输出 0X80(1000 0000),这样点阵第一行就是高电平, 而 P0 口输出 0X7F(0111 1111),这样点阵第一列就是低电平,从而让 LED 点阵第一个点点亮。
#include "reg51.h"
typedef unsigned int u16; //对系统默认数据类型进行重定义
typedef unsigned char u8;
//定义74HC595控制管脚
sbit SRCLK=P3^6; //移位寄存器时钟输入
sbit RCLK=P3^5; //存储寄存器时钟输入
sbit SER=P3^4; //串行数据输入
#define LEDDZ_COL_PORT P0 //点阵列控制端口
//u8 gled_row[8]={0x00,0x7C,0x82,0x82,0x82,0x7C,0x00,0x00};//LED点阵显示数字0的行数据
u8 gled_row1[8]={0x1E,0x3F,0x7F,0xFE,0xFE,0x7F,0x3F,0x1E};
//u8 gled_row2[8]={0x00,0x1C,0x14,0xFF,0x14,0x1C,0x00,0x00};
u8 gled_col[8]={0x7f,0xbf,0xdf,0xef,0xf7,0xfb,0xfd,0xfe};//LED点阵显示数字0的列数据
void delay_10us(u16 ten_us)
{
while(ten_us--);
}
void hc595_write_data(u8 dat)
{
u8 i=0;
for(i=0;i<8;i++)//循环8次即可将一个字节写入寄存器中
{
SER=dat>>7;//优先传输一个字节中的高位
dat<<=1;//将低位移动到高位
SRCLK=0;
delay_10us(1);
SRCLK=1;
delay_10us(1);//移位寄存器时钟上升沿将端口数据送入寄存器中
}
RCLK=0;
delay_10us(1);
RCLK=1;//存储寄存器时钟上升沿将前面写入到寄存器的数据输出
}
void main()
{
u8 i=0;
while(1)
{
for(i=0;i<8;i++)//循环8次扫描8行、列
{
LEDDZ_COL_PORT=gled_col[i];//传送列选数据
hc595_write_data(gled_row1[i]);//传送行选数据
delay_10us(100000);//延时一段时间,等待显示稳定
hc595_write_data(0x00);//消影
}
}
}
实现的功能:LED点阵点亮图像。
#include "reg51.h"
typedef unsigned int u16; //对系统默认数据类型进行重定义
typedef unsigned char u8;
//定义74HC595控制管脚
sbit SRCLK=P3^6; //移位寄存器时钟输入
sbit RCLK=P3^5; //存储寄存器时钟输入
sbit SER=P3^4; //串行数据输入
#define LEDDZ_COL_PORT P0 //点阵列控制端口
u8 gled_row[8]={0x38,0x7C,0x7E,0x3F,0x3F,0x7E,0x7C,0x38};//LED点阵显示图像的行数据
u8 gled_col[8]={0x7f,0xbf,0xdf,0xef,0xf7,0xfb,0xfd,0xfe};//LED点阵显示图像的列数据
void delay_10us(u16 ten_us)
{
while(ten_us--);
}
void hc595_write_data(u8 dat)
{
u8 i=0;
for(i=0;i<8;i++)//循环8次即可将一个字节写入寄存器中
{
SER=dat>>7;//优先传输一个字节中的高位
dat<<=1;//将低位移动到高位
SRCLK=0;
delay_10us(1);
SRCLK=1;
delay_10us(1);//移位寄存器时钟上升沿将端口数据送入寄存器中
}
RCLK=0;
delay_10us(1);
RCLK=1;//存储寄存器时钟上升沿将前面写入到寄存器的数据输出
}
void main()
{
u8 i=0;
while(1)
{
for(i=0;i<8;i++)//循环8次扫描8行、列
{
LEDDZ_COL_PORT=gled_col[i];//传送列选数据
hc595_write_data(gled_row[i]);//传送行选数据
delay_10us(100);//延时一段时间,等待显示稳定
hc595_write_data(0x00);//消影
}
}
}
#include "reg52.h"
typedef unsigned int u16; //对系统默认数据类型进行重定义
typedef unsigned char u8;
//定义直流电机控制管脚
sbit DC_Motor=P1^0;
#define DC_MOTOR_RUN_TIME 5000 //定义直流电机运行时间为5000ms
void delay_ms(u16 ms)
{
u16 i,j;
for(i=ms;i>0;i--)
for(j=110;j>0;j--);
}
void main()
{
DC_Motor=1;//开启电机
delay_ms(DC_MOTOR_RUN_TIME);
DC_Motor=0;//关闭电机
while(1)
{
}
}
#include "reg52.h"
typedef unsigned int u16; //对系统默认数据类型进行重定义
typedef unsigned char u8;
//定义ULN2003控制步进电机管脚
sbit IN1_A=P1^0;
sbit IN2_B=P1^1;
sbit IN3_C=P1^2;
sbit IN4_D=P1^3;
//定义独立按键控制脚
sbit KEY1=P3^1;
sbit KEY2=P3^0;
sbit KEY3=P3^2;
sbit KEY4=P3^3;
//使用宏定义独立按键按下的键值
#define KEY1_PRESS 1
#define KEY2_PRESS 2
#define KEY3_PRESS 3
#define KEY4_PRESS 4
#define KEY_UNPRESS 0
// 定义步进电机速度,值越小,速度越快
// 最小不能小于1
#define STEPMOTOR_MAXSPEED 1
#define STEPMOTOR_MINSPEED 5
void delay_10us(u16 ten_us)
{
while(ten_us--);
}
void delay_ms(u16 ms)
{
u16 i,j;
for(i=ms;i>0;i--)
for(j=110;j>0;j--);
}
void step_motor_28BYJ48_send_pulse(u8 step,u8 dir)
{
u8 temp=step;
if(dir==0) //如果为逆时针旋转
temp=7-step;//调换节拍信号
switch(temp)//8个节拍控制:A->AB->B->BC->C->CD->D->DA
{
case 0: IN1_A=1;IN2_B=0;IN3_C=0;IN4_D=0;break;
case 1: IN1_A=1;IN2_B=1;IN3_C=0;IN4_D=0;break;
case 2: IN1_A=0;IN2_B=1;IN3_C=0;IN4_D=0;break;
case 3: IN1_A=0;IN2_B=1;IN3_C=1;IN4_D=0;break;
case 4: IN1_A=0;IN2_B=0;IN3_C=1;IN4_D=0;break;
case 5: IN1_A=0;IN2_B=0;IN3_C=1;IN4_D=1;break;
case 6: IN1_A=0;IN2_B=0;IN3_C=0;IN4_D=1;break;
case 7: IN1_A=1;IN2_B=0;IN3_C=0;IN4_D=1;break;
default: IN1_A=0;IN2_B=0;IN3_C=0;IN4_D=0;break;//停止相序
}
}
u8 key_scan(u8 mode)
{
static u8 key=1;
if(mode)key=1;//连续扫描按键
if(key==1&&(KEY1==0||KEY2==0||KEY3==0||KEY4==0))//任意按键按下
{
delay_10us(1000);//消抖
key=0;
if(KEY1==0)
return KEY1_PRESS;
else if(KEY2==0)
return KEY2_PRESS;
else if(KEY3==0)
return KEY3_PRESS;
else if(KEY4==0)
return KEY4_PRESS;
}
else if(KEY1==1&&KEY2==1&&KEY3==1&&KEY4==1) //无按键按下
{
key=1;
}
return KEY_UNPRESS;
}
void main()
{
u8 key=0;
u8 dir=0;//默认逆时针方向
u8 speed=STEPMOTOR_MAXSPEED;//默认最大速度旋转
u8 step=0;
while(1)
{
key=key_scan(0);
if(key==KEY1_PRESS)//换向
{
dir=!dir;
}
else if(key==KEY2_PRESS)//加速
{
if(speed>STEPMOTOR_MAXSPEED)
speed-=1;
}
else if(key==KEY3_PRESS)//减速
{
if(speed
解析
对单片机按键,led点阵,I/O口扩展,电机等进行了学习。