- 目标检测YOLO实战应用案例100讲-基于深度学习的无人机目标检测算法轻量化研究(中)
林聪木
目标检测YOLO深度学习
目录基于改进YOLOv5的无人机图像实时目标检测4.1引言4.2基于改进YOLOv5的目标检测模型结构4.3消融实验及结果分析4.4算法迁移验证实验基于Jetson-Xavier的模型优化部署5.1引言5.2基于人在回路的目标检测模型裁剪5.3嵌入式实时目标检测交互软件基于深度学习的无人机目标检测算法轻量化研究知识拓展基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的无人机目标检测1.数
- 「战友」变「对手」:Pump.fun 与 Raydium 正式打响争夺 Solana Memecoin 市场的战役
比特币区块链web3
作者:Techub热点速递撰文:Yangz,TechubNews在关于Pump.fun将开发自家AMM的传闻发酵近一个月后,这一Solana生态龙头Memecoin发行平台今日正式宣布推出原生DEX——PumpSwap。加上本周早些时候Blockworks爆料的Raydium也将推出原生Memecoin发行平台LaunchLab的消息,曾经的「战友」已然变成了「对手」,争夺SolanaMemeco
- 跟着外贸高手学跟单!分享6大实用跟单技巧
在外贸行业中,订单的成交95%依赖于高效的跟单技巧。无论是分析客户行为,还是灵活运用价格策略,每一步都可能成为促成交易的关键。本文将结合外贸实战经验,分享6大核心跟单技巧,并介绍如何通过ZohoBooks的智能化外贸管理工具提升跟单效率与成功率。技巧1:深度分析客户,精准锁定需求核心方法:通过海关数据、社交媒体(如领英、脸书)及搜索引擎(谷歌)挖掘客户的采购历史、合作供应商、竞争对手等关键信息,并
- 医疗器械企业出海,如何应对序列号跟踪、批次管理难题?
全球医疗器械市场规模持续扩大,越来越多的中国医疗器械企业选择走出国门,参与全球竞争。在出海过程中,欧盟、美国等国家均要求企业建立完整的追溯体系,这给国内医疗企业带来了新的挑战。这该如何破局?ZohoBooks以智能库存管理、全球化合规支持和多系统集成能力,可以成为医疗器械企业出海的“数字化护航者”。一、医疗器械出海的三大管理痛点1、序列号跟踪:从生产到终端的全链条追溯难题医疗器械的序列号需贯穿生产
- 币圈不设防第三期回顾:中东资本入场,加密市场格局将如何重塑
比特币web3区块链
3月14日晚,由TechubNews主办的《币圈不设防》第三期Space活动圆满落幕。本期以“中东资本入股币安背后的逻辑与行业影响”为核心议题,特邀LYSLab投研分析师Veigar、RITDLabs联合创始人Benny、TechubNews运营负责人Sam等嘉宾,共同探讨中东资本的入局对加密行业的深远意义。以下是本期活动的深度总结。一、中东资本为何选择币安?战略布局浮出水面近期,阿布扎比主权基金
- 使用PHP对接StockTV全球金融市场数据API实战指南
php股票接口
关键词:PHPAPI开发、金融市场数据、WebSocket实时数据、cURL实战一、项目概述StockTV作为全球领先的金融数据平台,提供覆盖股票、外汇、期货和加密货币的实时行情服务。本文将手把手教你使用PHP实现以下核心功能:✅RESTAPI调用:获取历史行情数据✅WebSocket订阅:实时价格推送✅生产级特性:异常重试、速率控制、数据缓存✅高性能优化:连接池、异步处理二、环境准备1.运行环境
- AI算力要变天了?一文搞懂ASIC和GPU
asicgpuai芯片
近期,全球股市的动荡中,ASIC和GPU这两个科技股概念突然变得火热,引起了市场的高度关注。博通作为ASIC的代表,股价一路猛涨,而英伟达作为GPU的代表,股价却一路下跌。这是否意味着AI算力市场即将变天?随着人工智能技术的飞速发展,AI算力的重要性日益凸显。从早期的简单模型训练到如今的大规模语言模型如ChatGPT等的出现,对算力的需求呈爆发式增长。01那什么是ASIC和GPU?ASIC:定制化
- 优选算法训练篇07--力扣LCR179.查找总价格为目标值的两个商品
大胆飞猪
算法训练篇算法leetcode
目录1.题目链接:LCR179.查找总价格为目标值的两个商品2.题目描述:3.解法一(暴力解法,会超时):4.解法二(双指针-对撞指针):1.题目链接:LCR179.查找总价格为目标值的两个商品2.题目描述:购物车内的商品价格按照升序记录于数组price。请在购物车中找到两个商品的价格总和刚好是target。若存在多种情况,返回任一结果即可。示例1:输入:price=[3,9,12,15],tar
- AI大模型产品经理学习路线,2025最新,从AI产品经理零基础入门到精通,非常详细收藏我这一篇够了!
AGI-杠哥
人工智能产品经理学习语言模型agi自然语言处理
随着人工智能技术的发展,尤其是大模型(LargeModel)的兴起,越来越多的企业开始重视这一领域的投入。作为大模型产品经理,你需要具备一系列跨学科的知识和技能,以便有效地推动产品的开发、优化和市场化。以下是一份详细的大模型产品经理学习路线,旨在帮助你构建所需的知识体系,从零基础到精通。一、基础知识阶段1.计算机科学基础数据结构与算法:理解基本的数据结构(如数组、链表、树、图等)和常用算法(如排序
- 2025年第二届机器学习与神经网络国际学术会议(MLNN 2025)
分享学术科研与论文的禁小默
机器学习神经网络人工智能
重要信息官网:www.icmlnn.org时间:2025年4月22-24日地点:中国-重庆简介2025年第二届机器学习与神经网络国际学术会议(MLNN2025)围绕学习系统与神经网络的核心理论、关键技术和应用展开讨论,涵盖深度学习、计算机视觉、自然语言处理、强化学习等多个子领域,通过特邀报告、主题演讲、海报展示等形式,展示相关领域的最新研究成果和技术创新。征稿主题神经网络机器学习深度学习算法及应用
- 深度学习--概率
fantasy_arch
深度学习人工智能
1基本概率论1.1假设我们掷骰子,想知道1而不是看到另一个数字的概率,如果骰子是公司,那么所有6个结果(1..6),都有相同的可能发生,因此,我们可以说1发生的概率为1/6.然而现实生活中,对于我们从工厂收到的真实骰子,我们需要检查它是否有瑕疵,唯一的办法就是多投掷骰子,对于每个骰子观察到的[1.2...6]的概率随着投掷次数的增加,越来越接近1/6.导入必要的包%matplotlibinline
- 目前常用的机器视觉工具库总结,选一个适合自己的机器视觉库才是最好的。
yuanpan
计算机视觉图像处理aiAI编程
以下是常用机器视觉工具的总结,包括它们的特点、优点、缺点和是否付费:1.Halcon特点:由MVTec公司开发,专注于工业机器视觉。提供强大的图像处理、模式匹配、OCR和3D视觉功能。优点:高性能,适合复杂的工业应用。提供图形化编程界面(HDevelop),用户友好。支持多种硬件设备(如相机、采集卡)。缺点:付费:价格较高,适合企业级用户。开放性较低,定制化能力有限。学习曲线较高,文档复杂。是否付
- 【开题报告+论文+源码】基于SpringBoot+vue的鲜花购物商城
编程毕设
springboot后端java
项目背景与意义近年来,随着人们生活水平的提高,鲜花消费需求逐年增长。然而,传统的鲜花销售模式存在着诸如店面租金高、人力成本高、货源不稳定等问题,这使得商家在面对激烈的市场竞争时,难以获得持续稳定的发展。传统的鲜花商店也可能距离远,这使得消费者需要花时间在各个鲜花店里来回选择,而网上的消费群体可以通过网站,挑选并订购自己需要的鲜花[2]。因此,网络鲜花购物系统可以很好地解决顾客在购买鲜花时的地域限制
- 利用Python爬虫获取Shopee(虾皮)商品详情:实战指南
小爬虫程序猿
python爬虫开发语言
在跨境电商领域,Shopee(虾皮)作为东南亚及台湾地区领先的电商平台,拥有海量的商品信息。无论是进行市场调研、数据分析,还是寻找热门商品,获取Shopee商品详情都是一项极具价值的任务。然而,手动浏览和整理这些信息显然是低效且容易出错的。幸运的是,通过编写Python爬虫程序,我们可以高效地完成这一任务。本文将详细介绍如何利用Python爬虫获取Shopee商品详情,并提供完整的代码示例。一、为
- 利用AI与MySQL提升工业物联网健康监测的智慧水平——构建预测性维护的新纪元
墨夶
数据库学习资料1人工智能mysql物联网
在工业4.0和智能制造的大背景下,如何确保生产设备的高效稳定运行成为企业竞争力的核心要素之一。传统的事后维修方式已经难以满足现代制造业的需求,而基于人工智能(AI)的预测性维护系统则为这一挑战提供了全新的解决方案。今天,我们将深入探讨如何结合AI技术和MySQL数据库,打造一个智能、高效的工业物联网(IIoT)健康监测平台,助力企业在激烈的市场竞争中脱颖而出。一、为什么选择AI+MySQL?1.A
- 股票市场的量化交易策略如何应对市场情绪变化?
云策量化
程序化炒股量化软件量化交易量化炒股QMT股票交易PTrade量化交易股票投资deepseek
推荐阅读:《程序化炒股:如何申请官方交易接口权限?个人账户可以申请吗?》股票市场的量化交易策略如何应对市场情绪变化?在股票市场中,量化交易策略是一种基于数学模型和算法的交易方式,它通过分析历史数据来预测未来价格走势,并据此制定交易决策。然而,市场情绪的变化对股票价格有着不可忽视的影响。本文将探讨量化交易策略如何应对市场情绪的变化,并提供一些具体的代码示例。一、市场情绪的重要性市场情绪是指投资者对市
- Open3D 点云DBSCAN聚类算法
MelaCandy
算法聚类numpy计算机视觉图像处理3d
目录一、DBSCAN基本原理二、代码实现2.1关键函数2.2完整代码三、实现效果3.1原始点云3.2聚类后点云Open3D点云算法汇总及实战案例汇总的目录地址:Open3D点云算法与点云深度学习案例汇总(长期更新)-CSDN博客一、DBSCAN基本原理DBSCAN(Density-BasedSpatialClusteringofApplicationswithNoise)是一种基于密度的聚类算法,
- 做代理仓建议使用海外仓系统吗?
易境通
海外仓系统大数据
日益繁荣的跨境电商市场吸引了许多货代企业想要参与其中,却苦于没有经验、缺乏充裕资金和人力资源。而代理仓模式为企业提供了低成本、高灵活性的解决方案,能够有效降低门槛,快速响应市场需求。无需大量的资金、资源、人力投入,即可快速入局海外仓市场。此时,使用一个拥有代理功能的海外仓系统,可以有效简化代理账号和价格设置、客户信息管理,以及财务对账等多个环节流程,大大降低企业的操作难度,帮助企业全面提升管理效率
- 目标检测领域总结:从传统方法到 Transformer 时代的革新
DoYangTan
目标检测系列目标检测transformer人工智能
目标检测领域总结:从传统方法到Transformer时代的革新目标检测是计算机视觉领域的一个核心任务,它的目标是从输入图像中识别并定位出目标物体。随着深度学习的兴起,目标检测方法已经取得了显著的进展。从最早的传统方法到现如今基于Transformer的先进算法,目标检测的发展经历了多个重要的阶段。本文将详细总结目标检测领域的演进,涵盖传统方法、两阶段检测方法、单阶段检测方法和基于Transform
- 2024MathorCup数学建模之——MathorCup奖杯”获得者经验思路分享
美赛数学建模
数学建模
一、经验分享1.工具选择:顺手即可。Matlab和Python都是比较主流的选择,二者的应用场合各有不同。Python在数据分析、深度学习方面的优势愈发明显,而Matlab更适合进行物理仿真和数值计算。不过随着Python社区不断发展,其功能也愈发全面与强大,因此我们比较推荐学有余力的情况下可以更早接触Python。2.模型算法:多多益善。不一定要精通所有的算法,但是手上至少要准备一些常用的算法(
- AI人工智能软件开发方案:开启智能时代的创新钥匙
广州硅基技术官方
人工智能
一、引言:AI浪潮下的软件开发新机遇近年来,人工智能(AI)技术的迅猛发展如同一股汹涌澎湃的浪潮,席卷了全球各个领域。从最初的概念提出到如今的广泛应用,AI历经了漫长的发展历程,终于迎来了属于它的黄金时代。回首过去,AI的发展并非一帆风顺,早期由于计算能力和算法的限制,经历了多次起伏。但随着大数据、云计算、机器学习、深度学习等技术的不断突破,AI迎来了爆发式增长。如今,AI已经深入到人们生活和工作
- 深度学习框架PyTorch——从入门到精通(6.2)自动微分机制
Fansv587
深度学习pytorch人工智能经验分享python机器学习
本节自动微分机制是上一节自动微分的扩展内容自动微分是如何记录运算历史的保存张量非可微函数的梯度在本地设置禁用梯度计算设置requires_grad梯度模式(GradModes)默认模式(梯度模式)无梯度模式推理模式评估模式(`nn.Module.eval()`)自动求导中的原地操作原地操作的正确性检查多线程自动求导CPU上的并发不确定性计算图保留自动求导节点的线程安全性C++钩子函数不存在线程安全
- 电力电子仿真:整流器仿真_(14).电力电子电路设计与仿真实践
kkchenkx
电子电力仿真单片机嵌入式硬件电子电力仿真matlab
电力电子电路设计与仿真实践1.电力电子电路的基本概念1.1电力电子电路的定义电力电子电路是指用于电能变换和控制的电路。它通常由电力电子器件(如二极管、晶闸管、MOSFET、IGBT等)组成,通过这些器件的开关动作,实现对电能的高效转换和精确控制。电力电子电路广泛应用于电源、电机驱动、电力系统、可再生能源等领域。1.2电力电子电路的分类电力电子电路根据其功能可以分为以下几类:AC-DC整流器:将交流
- 电力电子仿真:整流器仿真_(15).整流器的性能评估
kkchenkx
电力电子仿真嵌入式硬件电子电力仿真单片机matlab
整流器的性能评估1.引言在电力电子系统中,整流器是将交流电转换为直流电的关键设备。整流器的性能直接影响到系统的效率、稳定性和可靠性。因此,对整流器进行性能评估是设计和优化电力电子系统的重要步骤。本节将详细介绍整流器性能评估的原理和方法,包括直流输出电压、纹波、效率、谐波失真和动态响应等关键指标的评估方法。2.直流输出电压2.1直流输出电压的定义直流输出电压是指整流器在稳态工作条件下,输出端的直流电
- 第二十一篇:伦理/道德Ethics
flying_1314
NLPethics伦理/道德隐私偏见双重用途
目录什么是伦理/道德?我们为什么要关心?为什么道德很难?学习成果大纲反对NLP道德检查的论据我们应该审查科学吗?H5N1透明度不是更好吗?AIvs.Cybersecurity核心NLP伦理概念偏见词嵌入中的偏差双重用途OpenAIGPT-2隐私GDPRAOL搜索数据泄露小组讨论提示自动刑期预测自动简历处理语言社区分类打包带走~什么是伦理/道德?我们应该如何生活——苏格拉底•正确的做法是什么?•为什
- Pytorch深度学习教程_9_nn模块构建神经网络
tRNA做科研
深度学习保姆教程深度学习pytorch神经网络
欢迎来到《深度学习保姆教程》系列的第九篇!在前面的几篇中,我们已经介绍了Python、numpy及pytorch的基本使用,进行了梯度及神经网络的实践并学习了激活函数和激活函数,在上一个教程中我们学习了优化算法。今天,我们将开始使用pytorch构建我们自己的神经网络。欢迎订阅专栏进行系统学习:深度学习保姆教程_tRNA做科研的博客-CSDN博客目录1.理解nn模块:(1)使用nn.Sequent
- 【机器学习】算法分类
CH3_CH2_CHO
什么?!是机器学习!!机器学习算法有监督学习无监督学习半监督学习强化学习
1、有监督学习1.1定义使用带标签的数据训练模型。有监督学习是机器学习中最常见的一种类型,它利用已知的输入特征和对应的输出标签来训练模型,使模型能够学习到特征与标签之间的映射关系。在训练过程中,模型会不断地调整自身的参数,以最小化预测值与真实标签之间的误差,从而提高预测的准确性。1.2回归问题1.2.1目标预测连续值。回归问题的目标是预测一个连续的数值结果,模型的输出是一个实数值。1.2.2解释回
- 图神经网络实战——分层自注意力网络
盼小辉丶
图神经网络从入门到项目实战神经网络人工智能深度学习
图神经网络实战——分层自注意力网络0.前言1.分层自注意力网络1.1模型架构1.2节点级注意力1.3语义级注意力1.4预测模块2.构建分层自注意力网络相关链接0.前言在异构图数据集上,异构图注意力网络的测试准确率为78.39%,比之同构版本有了较大提高,但我们还能进一步提高准确率。在本节中,我们将学习一种专门用于处理异构图的图神经网络架构,分层自注意力网络(hierarchicalself-att
- Radiance Fields from VGGSfM和Mast3r:两种先进3D重建方法的比较与分析
2401_87458718
3d
VGGSfM和Mast3r:3D场景重建的新方向在计算机视觉和3D重建领域,如何从2D图像重建3D场景一直是一个充满挑战的研究课题。近年来,随着深度学习技术的发展,一些新的方法被提出并取得了显著的进展。本文将重点介绍两种最新的基于深度学习的3D重建方法:VGGSfM和Mast3r,并通过GaussianSplatting技术对它们的性能进行全面比较和分析。VGGSfM:基于视觉几何的深度结构运动恢
- 基于 PyTorch 的 MNIST 手写数字分类模型
欣然~
pytorch分类人工智能
一、概述本代码使用PyTorch框架构建了一个简单的神经网络模型,用于解决MNIST手写数字分类任务。代码主要包括数据的加载与预处理、神经网络模型的构建、损失函数和优化器的定义、模型的训练、评估以及最终模型的保存等步骤。二、依赖库torch:PyTorch深度学习框架的核心库,提供了张量操作、自动求导等功能。torch.nn:PyTorch的神经网络模块,包含了各种神经网络层、损失函数等。torc
- SQL的各种连接查询
xieke90
UNION ALLUNION外连接内连接JOIN
一、内连接
概念:内连接就是使用比较运算符根据每个表共有的列的值匹配两个表中的行。
内连接(join 或者inner join )
SQL语法:
select * fron
- java编程思想--复用类
百合不是茶
java继承代理组合final类
复用类看着标题都不知道是什么,再加上java编程思想翻译的比价难懂,所以知道现在才看这本软件界的奇书
一:组合语法:就是将对象的引用放到新类中即可
代码:
package com.wj.reuse;
/**
*
* @author Administrator 组
- [开源与生态系统]国产CPU的生态系统
comsci
cpu
计算机要从娃娃抓起...而孩子最喜欢玩游戏....
要让国产CPU在国内市场形成自己的生态系统和产业链,国家和企业就不能够忘记游戏这个非常关键的环节....
投入一些资金和资源,人力和政策,让游
- JVM内存区域划分Eden Space、Survivor Space、Tenured Gen,Perm Gen解释
商人shang
jvm内存
jvm区域总体分两类,heap区和非heap区。heap区又分:Eden Space(伊甸园)、Survivor Space(幸存者区)、Tenured Gen(老年代-养老区)。 非heap区又分:Code Cache(代码缓存区)、Perm Gen(永久代)、Jvm Stack(java虚拟机栈)、Local Method Statck(本地方法栈)。
HotSpot虚拟机GC算法采用分代收
- 页面上调用 QQ
oloz
qq
<A href="tencent://message/?uin=707321921&Site=有事Q我&Menu=yes">
<img style="border:0px;" src=http://wpa.qq.com/pa?p=1:707321921:1></a>
- 一些问题
文强chu
问题
1.eclipse 导出 doc 出现“The Javadoc command does not exist.” javadoc command 选择 jdk/bin/javadoc.exe 2.tomcate 配置 web 项目 .....
SQL:3.mysql * 必须得放前面 否则 select&nbs
- 生活没有安全感
小桔子
生活孤独安全感
圈子好小,身边朋友没几个,交心的更是少之又少。在深圳,除了男朋友,没几个亲密的人。不知不觉男朋友成了唯一的依靠,毫不夸张的说,业余生活的全部。现在感情好,也很幸福的。但是说不准难免人心会变嘛,不发生什么大家都乐融融,发生什么很难处理。我想说如果不幸被分手(无论原因如何),生活难免变化很大,在深圳,我没交心的朋友。明
- php 基础语法
aichenglong
php 基本语法
1 .1 php变量必须以$开头
<?php
$a=” b”;
echo
?>
1 .2 php基本数据库类型 Integer float/double Boolean string
1 .3 复合数据类型 数组array和对象 object
1 .4 特殊数据类型 null 资源类型(resource) $co
- mybatis tools 配置详解
AILIKES
mybatis
MyBatis Generator中文文档
MyBatis Generator中文文档地址:
http://generator.sturgeon.mopaas.com/
该中文文档由于尽可能和原文内容一致,所以有些地方如果不熟悉,看中文版的文档的也会有一定的障碍,所以本章根据该中文文档以及实际应用,使用通俗的语言来讲解详细的配置。
本文使用Markdown进行编辑,但是博客显示效
- 继承与多态的探讨
百合不是茶
JAVA面向对象 继承 对象
继承 extends 多态
继承是面向对象最经常使用的特征之一:继承语法是通过继承发、基类的域和方法 //继承就是从现有的类中生成一个新的类,这个新类拥有现有类的所有extends是使用继承的关键字:
在A类中定义属性和方法;
class A{
//定义属性
int age;
//定义方法
public void go
- JS的undefined与null的实例
bijian1013
JavaScriptJavaScript
<form name="theform" id="theform">
</form>
<script language="javascript">
var a
alert(typeof(b)); //这里提示undefined
if(theform.datas
- TDD实践(一)
bijian1013
java敏捷TDD
一.TDD概述
TDD:测试驱动开发,它的基本思想就是在开发功能代码之前,先编写测试代码。也就是说在明确要开发某个功能后,首先思考如何对这个功能进行测试,并完成测试代码的编写,然后编写相关的代码满足这些测试用例。然后循环进行添加其他功能,直到完全部功能的开发。
- [Maven学习笔记十]Maven Profile与资源文件过滤器
bit1129
maven
什么是Maven Profile
Maven Profile的含义是针对编译打包环境和编译打包目的配置定制,可以在不同的环境上选择相应的配置,例如DB信息,可以根据是为开发环境编译打包,还是为生产环境编译打包,动态的选择正确的DB配置信息
Profile的激活机制
1.Profile可以手工激活,比如在Intellij Idea的Maven Project视图中可以选择一个P
- 【Hive八】Hive用户自定义生成表函数(UDTF)
bit1129
hive
1. 什么是UDTF
UDTF,是User Defined Table-Generating Functions,一眼看上去,貌似是用户自定义生成表函数,这个生成表不应该理解为生成了一个HQL Table, 貌似更应该理解为生成了类似关系表的二维行数据集
2. 如何实现UDTF
继承org.apache.hadoop.hive.ql.udf.generic
- tfs restful api 加auth 2.0认计
ronin47
目前思考如何给tfs的ngx-tfs api增加安全性。有如下两点:
一是基于客户端的ip设置。这个比较容易实现。
二是基于OAuth2.0认证,这个需要lua,实现起来相对于一来说,有些难度。
现在重点介绍第二种方法实现思路。
前言:我们使用Nginx的Lua中间件建立了OAuth2认证和授权层。如果你也有此打算,阅读下面的文档,实现自动化并获得收益。SeatGe
- jdk环境变量配置
byalias
javajdk
进行java开发,首先要安装jdk,安装了jdk后还要进行环境变量配置:
1、下载jdk(http://java.sun.com/javase/downloads/index.jsp),我下载的版本是:jdk-7u79-windows-x64.exe
2、安装jdk-7u79-windows-x64.exe
3、配置环境变量:右击"计算机"-->&quo
- 《代码大全》表驱动法-Table Driven Approach-2
bylijinnan
java
package com.ljn.base;
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Collections;
import java.uti
- SQL 数值四舍五入 小数点后保留2位
chicony
四舍五入
1.round() 函数是四舍五入用,第一个参数是我们要被操作的数据,第二个参数是设置我们四舍五入之后小数点后显示几位。
2.numeric 函数的2个参数,第一个表示数据长度,第二个参数表示小数点后位数。
例如:
select cast(round(12.5,2) as numeric(5,2))  
- c++运算符重载
CrazyMizzz
C++
一、加+,减-,乘*,除/ 的运算符重载
Rational operator*(const Rational &x) const{
return Rational(x.a * this->a);
}
在这里只写乘法的,加减除的写法类似
二、<<输出,>>输入的运算符重载
&nb
- hive DDL语法汇总
daizj
hive修改列DDL修改表
hive DDL语法汇总
1、对表重命名
hive> ALTER TABLE table_name RENAME TO new_table_name;
2、修改表备注
hive> ALTER TABLE table_name SET TBLPROPERTIES ('comment' = new_comm
- jbox使用说明
dcj3sjt126com
Web
参考网址:http://www.kudystudio.com/jbox/jbox-demo.html jBox v2.3 beta [
点击下载]
技术交流QQGroup:172543951 100521167
[2011-11-11] jBox v2.3 正式版
- [调整&修复] IE6下有iframe或页面有active、applet控件
- UISegmentedControl 开发笔记
dcj3sjt126com
// typedef NS_ENUM(NSInteger, UISegmentedControlStyle) {
// UISegmentedControlStylePlain, // large plain
&
- Slick生成表映射文件
ekian
scala
Scala添加SLICK进行数据库操作,需在sbt文件上添加slick-codegen包
"com.typesafe.slick" %% "slick-codegen" % slickVersion
因为我是连接SQL Server数据库,还需添加slick-extensions,jtds包
"com.typesa
- ES-TEST
gengzg
test
package com.MarkNum;
import java.io.IOException;
import java.util.Date;
import java.util.HashMap;
import java.util.Map;
import javax.servlet.ServletException;
import javax.servlet.annotation
- 为何外键不再推荐使用
hugh.wang
mysqlDB
表的关联,是一种逻辑关系,并不需要进行物理上的“硬关联”,而且你所期望的关联,其实只是其数据上存在一定的联系而已,而这种联系实际上是在设计之初就定义好的固有逻辑。
在业务代码中实现的时候,只要按照设计之初的这种固有关联逻辑来处理数据即可,并不需要在数据库层面进行“硬关联”,因为在数据库层面通过使用外键的方式进行“硬关联”,会带来很多额外的资源消耗来进行一致性和完整性校验,即使很多时候我们并不
- 领域驱动设计
julyflame
VODAO设计模式DTOpo
概念:
VO(View Object):视图对象,用于展示层,它的作用是把某个指定页面(或组件)的所有数据封装起来。
DTO(Data Transfer Object):数据传输对象,这个概念来源于J2EE的设计模式,原来的目的是为了EJB的分布式应用提供粗粒度的数据实体,以减少分布式调用的次数,从而提高分布式调用的性能和降低网络负载,但在这里,我泛指用于展示层与服务层之间的数据传输对
- 单例设计模式
hm4123660
javaSingleton单例设计模式懒汉式饿汉式
单例模式是一种常用的软件设计模式。在它的核心结构中只包含一个被称为单例类的特殊类。通过单例模式可以保证系统中一个类只有一个实例而且该实例易于外界访问,从而方便对实例个数的控制并节约系统源。如果希望在系统中某个类的对象只能存在一个,单例模式是最好的解决方案。
&nb
- logback
zhb8015
loglogback
一、logback的介绍
Logback是由log4j创始人设计的又一个开源日志组件。logback当前分成三个模块:logback-core,logback- classic和logback-access。logback-core是其它两个模块的基础模块。logback-classic是log4j的一个 改良版本。此外logback-class
- 整合Kafka到Spark Streaming——代码示例和挑战
Stark_Summer
sparkstormzookeeperPARALLELISMprocessing
作者Michael G. Noll是瑞士的一位工程师和研究员,效力于Verisign,是Verisign实验室的大规模数据分析基础设施(基础Hadoop)的技术主管。本文,Michael详细的演示了如何将Kafka整合到Spark Streaming中。 期间, Michael还提到了将Kafka整合到 Spark Streaming中的一些现状,非常值得阅读,虽然有一些信息在Spark 1.2版
- spring-master-slave-commondao
王新春
DAOspringdataSourceslavemaster
互联网的web项目,都有个特点:请求的并发量高,其中请求最耗时的db操作,又是系统优化的重中之重。
为此,往往搭建 db的 一主多从库的 数据库架构。作为web的DAO层,要保证针对主库进行写操作,对多个从库进行读操作。当然在一些请求中,为了避免主从复制的延迟导致的数据不一致性,部分的读操作也要到主库上。(这种需求一般通过业务垂直分开,比如下单业务的代码所部署的机器,读去应该也要从主库读取数