- Mysql数据库和Sql语句
Jessica小戴
数据库mysqlsql
数据库管理:sql语句:数据库用来增删改查的语句(重要)备份:数据库的数据进行备份主从复制、读写分离、高可用(重要)Mysql数据库和Sql语句一、Mysql数据库1、数据库:组织、存储、管理数据的仓库2、数据库的管理系统(DBMS):实现对数据有效组织、管理和存取的系统软件3、数据库软件:mysql、oracle(大数据系统一般使用、大企业使用)、sql-server、MariaDB也是mysq
- 洞见数据未来,StarRocks Summit Asia 2024 即将启幕!
人工智能data
在AI时代,我们需要怎样的数据基础软件?数据量和数据类型的需求飞速上涨,我们不仅需要将历史上各种基础设施中的数据进行分析使用,还要关注性能、灵活性、性价比,以及确保单一可信数据源。这一切构成了当前大数据领域的核心难题。今年12月,StarRocksSummitAsia重磅启动!作为年度数据盛会,我们将从用户、平台方、业务领袖和技术极客等不同视角展开交流,携手共建未来的数据解决方案。本届峰会,我们将
- 国产海光CPU平台兼容性指南-基础软件分册-20231013(附各系统下载链接)
技术瘾君子1573
服务器&存储服务器兼容列表海光CPU云计算大数据操作系统
目录声明一、操作系统二、虚拟化和云2.1虚拟化和云2.2虚拟机上的操作系统2.2.1VMwarevSphere上的虚拟机操作系统2.2.2KVM上的虚拟机操作系统2.2.3WindowsHyper-V上的虚拟机操作系统2.2.4VirtualBox上的虚拟机操作系统三、分布式存储四、数据库五、中间件六、大数据七、平台组件7.1云平台7.2大数据平台7.3人工智能平台7.4科学与工程计算平台八、其它
- 数据驱动销售预测的未来:ScriptEcho赋能高效决策
前端
在瞬息万变的商业环境中,准确的销售预测是企业制定有效销售策略、实现业绩增长的基石。传统的销售预测方法往往依赖于人工分析和复杂的电子表格,效率低下,难以应对市场变化的快速冲击。然而,随着大数据的兴起和人工智能技术的飞速发展,数据驱动决策正成为现代企业提升竞争力的关键。本文将探讨销售预测面临的挑战与机遇,并重点介绍ScriptEcho如何通过AI赋能,提升销售预测的准确性和效率,助力企业实现数据驱动增
- minio免费文件管理器(windows版本),若依RuoYi-Vue-Plus框架使用,有需要的可以下载,因为官网下载特别慢
程序员WANG
工具windowsvue.js容器
MinIO是一款开源的对象存储系统,它提供类似AmazonS3的云存储服务,适用于各种规模的企业。MinIO设计为高性能、安全且易于使用,适合存储大量的非结构化数据,如图片、文档、视频以及大数据分析中的日志文件等。在本案例中,我们关注的是Windows版本的MinIO,它被集成到了若依RuoYi-Vue-Plus框架中,以实现文件管理功能。若依RuoYi-Vue-Plus是一个基于Vue.js的现
- 分布式系统理论基础二-CAP
王知无(import_bigdata)
GitHub:https://github.com/wangzhiwubigdata/God-Of-BigData关注公众号,内推,面试,资源下载,关注更多大数据技术~大数据成神之路~预计更新500+篇文章,已经更新50+篇~引言CAP是分布式系统、特别是分布式存储领域中被讨论最多的理论,“什么是CAP定理?”在Quora分布式系统分类下排名FAQ的No.1。CAP在程序员中也有较广的普及,它不仅
- 大数据湖仓一体架构未来思考
王知无(import_bigdata)
架构
湖仓一体架构是最近1-2年时间开始频繁出现在数据开发领域的新名词。也是各大公司竞相投入的对象。网络上关于湖仓一体架构的实践文章很多,看得也很眼花缭乱。我们今天站在一个「接地气」的角度,来说一说湖仓一体架构中未来需要关注的核心框架有哪些。文章内容也没有经过仔细的斟酌,完全是一点不成熟的想法,而且站的角度不是高屋建瓴的而是从下往上的。一个基本判断是湖仓一体架构在形式上不止一种大家可以从网上看到很多关于
- 大数据是什么?用浅显的语言揭开神秘面纱
Echo_Wish
大数据大数据单例模式
大数据是什么?用浅显的语言揭开神秘面纱在我们生活的时代,“大数据”已经从一个技术术语,成为了街头巷尾时常听到的词汇。然而,究竟什么是大数据?它离我们有多远?我们该如何理解这个复杂又常用的概念?作为一名深耕大数据领域的创作者,我希望用通俗易懂的语言,结合生活实例和代码,为大家揭开大数据的神秘面纱。一、大数据的定义:比“大”更重要的是“复杂性”从广义上讲,大数据指的是无法通过传统手段高效处理的数据集合
- 在 Python 中使用 Ollama API
一路追寻
大模型PythonOllamaLLMlinuxpython
在Python中使用OllamaAPI在本文中,我们将简单介绍如何在Python中使用OllamaAPI。无论你是想进行简单的聊天对话、使用流式响应处理大数据、还是希望在本地进行模型的创建、复制、删除等操作,本文都可以为你提供指导。此外,我们还展示了如何使用自定义客户端和异步编程来优化你的应用程序性能,环境准备在开始使用Python与OllamaAPI交互之前,请确保您的开发环境满足以下条件:Py
- FFA 2024 「流批一体」专场:探索在不同场景的流批一体
Apache Flink
FlinkForwardAsia2024即将盛大开幕!作为ApacheFlink社区备受期待的年度盛会之一,本届大会将于11月29至30日在上海隆重举行。FlinkForwardAsia(简称FFA)是由Apache官方授权的社区技术大会,旨在汇聚领先的行业实践与技术动态。在众多合作伙伴和技术开发者的支持下,FFA已成功举办六届。适逢ApacheFlink诞生10周年,今年的FFA将与广大开发者分
- AI与API的融合:构建智能互联技术世界的基石
IT数据V+I7809804594
人工智能数据分析python爬虫大数据
在当今科技飞速发展的时代,人工智能(AI)与应用程序接口(API)的融合正在开启智能应用的新纪元。AI以其强大的数据处理和分析能力,正在改变各行各业的工作方式,而API则作为连接技术与应用的桥梁,为AI技术的普及和应用提供了无限可能。本文将深入探讨AI与API的融合如何推动智能应用的创新和发展,以及其在各个领域的应用和前景。一、AI与API融合的背景随着大数据、云计算、物联网等技术的快速发展,人工
- Hadoop 和 Spark 的内存管理机制分析
王子良.
经验分享hadoopspark大数据
欢迎来到我的博客!非常高兴能在这里与您相遇。在这里,您不仅能获得有趣的技术分享,还能感受到轻松愉快的氛围。无论您是编程新手,还是资深开发者,都能在这里找到属于您的知识宝藏,学习和成长。博客内容包括:Java核心技术与微服务:涵盖Java基础、JVM、并发编程、Redis、Kafka、Spring等,帮助您全面掌握企业级开发技术。大数据技术:涵盖Hadoop(HDFS)、Hive、Spark、Fli
- 2025最新大数据毕业设计选题汇总:创新课题推荐
HaiLang_IT
毕业设计选题大数据毕业设计python
目录前言毕设选题开题指导建议更多精选选题选题帮助最后前言大家好,这里是海浪学长毕设专题!大四是整个大学期间最忙碌的时光,一边要忙着准备考研、考公、考教资或者实习为毕业后面临的升学就业做准备,一边要为毕业设计耗费大量精力。学长给大家整理了大数据专业最新精选选题,如遇选题困难或选题有任何疑问,都可以问学长哦(见文末)!对毕设有任何疑问都可以问学长哦!更多选题指导:最新最全计算机专业毕设选题精选推荐汇总
- PL/SQL语言的文件操作
云端 架构师
包罗万象golang开发语言后端
PL/SQL语言的文件操作引言PL/SQL(ProceduralLanguage/SQL)是Oracle数据库提供的一种过程化编程语言,它结合了SQL的强大数据处理能力和过程性编程的灵活性。PL/SQL不仅可以用于数据库的操作和处理用户输入的数据,还可以进行丰富的文件操作。随着数据量的增加和信息处理需求的提高,掌握PL/SQL中的文件操作技术,对于数据库管理员和开发人员而言,显得尤为重要。本文将对
- 大数据学习(五):如何使用 Livy提交spark批量任务--转载
zuoseve01
livy
Livy是一个开源的REST接口,用于与Spark进行交互,它同时支持提交执行代码段和完整的程序。Livy封装了spark-submit并支持远端执行。启动服务器执行以下命令,启动livy服务器。./bin/livy-server这里假设spark使用yarn模式,所以所有文件路径都默认位于HDFS中。如果是本地开发模式的话,直接使用本地文件即可(注意必须配置livy.conf文件,设置livy.
- Spark Livy 指南及livy部署访问实践
house.zhang
大数据-Spark大数据
背景:ApacheSpark是一个比较流行的大数据框架、广泛运用于数据处理、数据分析、机器学习中,它提供了两种方式进行数据处理,一是交互式处理:比如用户使用spark-shell,编写交互式代码编译成spark作业提交到集群上去执行;二是批处理,通过spark-submit提交打包好的spark应用jar到集群中进行执行。这两种运行方式都需要安装spark客户端配置好yarn集群信息,并打通集群网
- 大数据学习(四):Livy的安装配置及pyspark的会话执行
猪笨是念来过倒
大数据pyspark
一个基于Spark的开源REST服务,它能够通过REST的方式将代码片段或是序列化的二进制代码提交到Spark集群中去执行。它提供了以下这些基本功能:提交Scala、Python或是R代码片段到远端的Spark集群上执行;提交Java、Scala、Python所编写的Spark作业到远端的Spark集群上执行;提交批处理应用在集群中运行。从Livy所提供的基本功能可以看到Livy涵盖了原生Spar
- Scaleph:基于Kubernetes的开放式数据平台
尤淞渊
Scaleph:基于Kubernetes的开放式数据平台scalephOpendataplatformbasedonFlinkandKubernetes,supportsweb-uiclick-and-dropdataintegrationwithSeaTunnelbackendedbyFlinkengine,flinkonlinesqldevelopmentbackendedbyFlinkSql
- 深入Flink : 源码解读数据倾斜代码落地
java
大家好,我是大圣,很高兴又和大家见面。上篇文章,我们详细说了通过使得Flink每个并行子任务上面都有对应的key来解决数据倾斜。但是我们只说了这个方案的思想和设计理解,还没有把这种方案真正应用到我们的Flink任务当中。这篇文章我们就重点把这种方案实践到我们写的Flink任务当中。什么是数据倾斜解决方案回顾代码如下:publicclassRebalanceKeyCreator{privateint
- 网络爬虫——分布式爬虫架构
好看资源分享
网络爬虫Python爬虫分布式架构
分布式爬虫在现代大数据采集中是不可或缺的一部分。随着互联网信息量的爆炸性增长,单机爬虫在性能、效率和稳定性上都面临巨大的挑战。分布式爬虫通过任务分发、多节点协作以及结果整合,成为解决大规模数据抓取任务的核心手段。本节将从Scrapy框架的基本使用、Scrapy-Redis的分布式实现、分布式爬虫的优化策略等多个方面展开,结合实际案例,帮助开发者掌握分布式爬虫的设计与实现。1.Scrapy框架的核心
- Python-玩转数据-数据分析之分析思维
人猿宇宙
数据分析pythonbigdata
一、说明当下时代的社会生产发展,人们都开始习惯于用数据来说明某个观点和反映事物的内在规律或享用自动化和人工智能带来的便利。但这些轻松快捷的方便背后,都是相关工作者的专业流程作为源源不断的支撑。二、大数据思维自从几年前大数据开始兴起,大数据思维已经逐渐被更动的人接受,随着其进一步发展,产生了巨大的生产效果。三、数据驱动的生产力作为一个数据工程师,仅仅知道跑数据是不够的,还需要通过数据发现生产环节出现
- 火星数据电竞数据,世界杯数据接口api,足球数据资料库
Tina0898
数据分析
电竞数据包含的内容有很多,比如说基础数据(实时比分,关键事件,赛后数据等等),统计数据(阵容分析,选手分析,地图分析等),还有资料库数据(赛事战队,赛程赛果,赛况榜单等等),众多的数据组合而成形成如今的电竞大数据。在当今电竞世界中,电子竞技的大数据可以用在多个方面,从自身来说:可以用来分析自己的强势点,可以分析对手的弱点,从而运用更好的策略来战胜对手。通过电竞大数据也可以更好地了解游戏,了解当下游
- 构建高效GPU算力平台:挑战、策略与未来展望
Mr' 郑
gpu算力
引言随着深度学习、高性能计算和大数据分析等领域的快速发展,GPU(图形处理器)因其强大的并行计算能力和浮点运算速度而成为首选的计算平台。然而,随着模型规模的增长和技术的进步,构建高效稳定的GPU算力平台面临着新的挑战。本文旨在探讨这些挑战、应对策略以及对未来发展的展望。当前挑战算力分配与资源优化在多用户共享GPU集群的环境下,合理分配计算资源并确保每个任务能够高效运行是一项挑战。这不仅涉及到硬件资
- Flink(十):DataStream API (七) 状态
Leven199527
Flinkflink大数据
1.状态的定义在ApacheFlink中,状态(State)是指在数据流处理过程中需要持久化和追踪的中间数据,它允许Flink在处理事件时保持上下文信息,从而支持复杂的流式计算任务,如聚合、窗口计算、联接等。状态是Flink处理有状态操作(如窗口、时间戳操作、聚合等)的核心组成部分。2.状态的类型Flink提供了强大的状态管理机制,允许应用程序在分布式环境中处理状态,保证高可用性和容错性。Flin
- Databricks:打造数据国度的“金砖四国”
weixin_33832340
大数据
Databricks,一个并不算熟悉的名字,是大数据国度的后起之星。成立不够一年,但却阵容强大,创始人都是开源圈子里面的重要级人物,值得关注。从公司名Databricks似乎就能看出一些深意——data(数据)+bricks(金砖四国)。不知道,在数据国度里Databricks是否具有“金砖四国”的发展前景呢?可以先从公司的创始背景谈起,打开Databricks官网,“We'reworkingto
- 一文详解大厂数据中台架构
isNotNullX
架构大数据性能优化
在大数据发展的黄金期,几乎所有的高科技企业都在思考一个问题:海量数据作为大多数企业发展不可避免的一个趋势之后,企业该怎么去应用这部分数据资产,会对其商业产生什么影响,如何使数据对企业产生正面的推动而不是成为企业的负担。作为国内的主要大数据玩家,阿里在2015年提出了“大中台、小前台”的战略,奠定了其内部发展数据中台的基础。2018年因为“腾讯数据中台论”,中台再度成为了人们谈论的焦点。至此,关于“
- 大数据公司 Databricks 详解
Bj陈默
大数据
Databricks是一家在大数据和人工智能领域具有重要影响力的美国企业软件公司,以下是关于它的详细技术解析:1.起源与背景:Databricks成立于2013年,由来自加州大学伯克利分校AMP实验室的Spark大数据处理系统的多位创始人联合创立,包括AliGhodsi、AndyKonwinski、IonStoica、PatrickWendell、ReynoldXin、MateiZaharia、A
- hive小文件合并机制_hive小文件的问题弊端以及合并
做生活的创作者
hive小文件合并机制
小文件的弊端1、HDFS中每个文件的元数据信息,包括位置大小分块信息等,都保存在NN内存中,在小文件数较多的情况下,会造成占用大量内存空间,导致NN性能下降;2、在读取小文件多的目录时,MR会产生更多map数,造成GC频繁,浪费集群资源;3、现在大数据平台文件总数超过30亿,单个NS文件数超过4亿的时候,读写性能会急剧下降,影响到所有读写该NS的任务性能;4、如果队列限制最大map数是20000,
- 数仓建模(五)选择数仓技术栈:Hive & ClickHouse & 其它
昊昊该干饭了
数仓建模大数据hiveclickhousehadoop
在大数据技术的飞速发展下,数据仓库(DataWarehouse,简称数仓)成为企业处理和分析海量数据的核心工具。市场上主流数仓技术栈丰富,如Hive、ClickHouse、Druid、Greenplum等,对于初学者而言,选择合适的技术栈是一项挑战。本文将详细解析Hive、ClickHouse及其他数仓技术,帮助读者根据场景需求选择最佳工具。目录一、数据仓库的基础概念和技术选型原则1.1什么是数据
- Hive 数据类型全解析:大数据开发者的实用指南
大鳥
sqlhive数据仓库
在大数据处理领域,Hive作为一款基于Hadoop的数据仓库工具,被广泛应用于数据的存储、查询和分析。而理解Hive的数据类型是有效使用Hive的基础,本文将深入探讨Hive的数据类型,帮助大家更好地掌握Hive的使用。Hive数据类型概述Hive支持多种数据类型,主要可分为数值类型、日期/时间类型、字符类型、Misc类型以及复杂类型。这些数据类型为存储和处理各种不同格式的数据提供了有力的支持。以
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟