Pytorch深度学习—FashionMNIST数据集训练

文章目录

    • FashionMNIST数据集
    • 需求库导入、数据迭代器生成
    • 设备选择
    • 样例图片展示
    • 日志写入
    • 评估—计数器
    • 模型构建
    • 训练函数
    • 整体代码
    • 训练过程
    • 日志

FashionMNIST数据集

  • FashionMNIST(时尚 MNIST)是一个用于图像分类的数据集,旨在替代传统的手写数字MNIST数据集。它由 Zalando Research 创建,适用于深度学习和计算机视觉的实验。
    • FashionMNIST 包含 10 个类别,分别对应不同的时尚物品。这些类别包括 T恤/上衣、裤子、套头衫、裙子、外套、凉鞋、衬衫、运动鞋、包和踝靴。
    • 每个类别有 6,000 张训练图像和 1,000 张测试图像,总计 70,000 张图像。
    • 每张图像的尺寸为 28x28 像素,与MNIST数据集相同。
    • 数据集中的每个图像都是灰度图像,像素值在0到255之间。
      Pytorch深度学习—FashionMNIST数据集训练_第1张图片

需求库导入、数据迭代器生成

import os
import random
import numpy as np
import datetime
import torch
import torch.nn as nn
from torch.utils.data import DataLoader

import torchvision
from torchvision import transforms

import argparse
from tqdm import tqdm

import matplotlib.pyplot as plt
from torch.utils.tensorboard import SummaryWriter


def _load_data():
    """download the data, and generate the dataloader"""
    trans = transforms.Compose([transforms.ToTensor()])

    train_dataset = torchvision.datasets.FashionMNIST(root='./data/', train=True, download=True, transform=trans)
    test_dataset = torchvision.datasets.FashionMNIST(root='./data/', train=False, download=True, transform=trans)
    # print(len(train_dataset), len(test_dataset))
    train_loader = DataLoader(train_dataset, shuffle=True, batch_size=args.batch_size, num_workers=args.num_works)
    test_loader = DataLoader(test_dataset, shuffle=True, batch_size=args.batch_size, num_workers=args.num_works)

    return (train_loader, test_loader)

设备选择

def _device():
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    return device

样例图片展示

"""display data examples"""
def _image_label(labels):
    text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat',
                  'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']
    return [text_labels[int(i)] for i in labels]


def _show_images(imgs, rows, columns, titles=None, scale=1.5):
    figsize = (rows * scale, columns * 1.5)
    fig, axes = plt.subplots(rows, columns, figsize=figsize)
    axes = axes.flatten()
    for i, (img, ax) in enumerate(zip(imgs, axes)):
        ax.imshow(img)
        ax.axes.get_xaxis().set_visible(False)
        ax.axes.get_yaxis().set_visible(False)
        if titles:
            ax.set_title(titles[i])
    plt.show()
    return axes

def _show_examples():
    train_loader, test_loader = _load_data()

    for images, labels in train_loader:
        images = images.squeeze(1)
        _show_images(images, 3, 3, _image_label(labels))
        break

日志写入

class _logger():
    def __init__(self, log_dir, log_history=True):
        if log_history:
            log_dir = os.path.join(log_dir, datetime.datetime.now().strftime("%Y_%m_%d__%H_%M_%S"))
        self.summary = SummaryWriter(log_dir)

    def scalar_summary(self, tag, value, step):
        self.summary.add_scalars(tag, value, step)

    def images_summary(self, tag, image_tensor, step):
        self.summary.add_images(tag, image_tensor, step)

    def figure_summary(self, tag, figure, step):
        self.summary.add_figure(tag, figure, step)

    def graph_summary(self, model):
        self.summary.add_graph(model)

    def close(self):
        self.summary.close()

评估—计数器

class AverageMeter():
    def __init__(self):
        self.reset()

    def reset(self):
        self.val = 0
        self.avg = 0
        self.sum = 0
        self.count = 0

    def update(self, val, n=1):
        self.val = val
        self.sum += val * n
        self.count += n
        self.avg = self.sum / self.count

模型构建

class Conv3x3(nn.Module):
    def __init__(self, in_channels, out_channels, down_sample=False):
        super(Conv3x3, self).__init__()
        self.conv = nn.Sequential(nn.Conv2d(in_channels, out_channels, 3, 1, 1),
                                  nn.BatchNorm2d(out_channels),
                                  nn.ReLU(inplace=True),
                                  nn.Conv2d(out_channels, out_channels, 3, 1, 1),
                                  nn.BatchNorm2d(out_channels),
                                  nn.ReLU(inplace=True))
        if down_sample:
            self.conv[3] = nn.Conv2d(out_channels, out_channels, 2, 2, 0)

    def forward(self, x):
        return self.conv(x)

class SimpleNet(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(SimpleNet, self).__init__()
        self.conv1 = Conv3x3(in_channels, 32)
        self.conv2 = Conv3x3(32, 64, down_sample=True)
        self.conv3 = Conv3x3(64, 128)
        self.conv4 = Conv3x3(128, 256, down_sample=True)
        self.fc = nn.Linear(256*7*7, out_channels)

    def forward(self, x):
        x = self.conv1(x)
        x = self.conv2(x)
        x = self.conv3(x)
        x = self.conv4(x)

        x = torch.flatten(x, 1)
        out = self.fc(x)
        return out

训练函数

def train(model, train_loader, test_loader, criterion, optimizor, epochs, device, writer, save_weight=False):
    train_loss = AverageMeter()
    test_loss = AverageMeter()
    train_precision = AverageMeter()
    test_precision = AverageMeter()

    time_tick = datetime.datetime.now().strftime("%Y_%m_%d__%H_%M_%S")

    for epoch in range(epochs):
        print('\nEpoch: [%d | %d] LR: %f' % (epoch + 1, args.epochs, args.lr))
        model.train()
        for input, label in tqdm(train_loader):
            input, label = input.to(device), label.to(device)
            output = model(input)
            # backward
            loss = criterion(output, label)
            optimizor.zero_grad()
            loss.backward()
            optimizor.step()

            # logger
            predict = torch.argmax(output, dim=1)
            train_pre = sum(predict == label) / len(label)
            train_loss.update(loss.item(), input.size(0))
            train_precision.update(train_pre.item(), input.size(0))

        model.eval()
        with torch.no_grad():
            for X, y in tqdm(test_loader):
                X, y = X.to(device), y.to(device)
                y_hat = model(X)

                loss_te = criterion(y_hat, y)
                predict_ = torch.argmax(y_hat, dim=1)
                test_pre = sum(predict_ == y) / len(y)

                test_loss.update(loss_te.item(), X.size(0))
                test_precision.update(test_pre.item(), X.size(0))

        if save_weight:
            best_dice = args.best_dice
            weight_dir = os.path.join(args.weight_dir, args.model, time_tick)
            os.makedirs(weight_dir, exist_ok=True)

            monitor_dice = test_precision.avg
            if monitor_dice > best_dice:
                best_dice = max(monitor_dice, best_dice)

                name = os.path.join(weight_dir, args.model + '_' + str(epoch) + \
                       '_test_loss-' + str(round(test_loss.avg, 4)) + \
                       '_test_dice-' + str(round(best_dice, 4)) + '.pt')
                torch.save(model.state_dict(), name)

        print("train" + '---Loss: {loss:.4f} | Dice: {dice:.4f}'.format(loss=train_loss.avg, dice=train_precision.avg))
        print("test " + '---Loss: {loss:.4f} | Dice: {dice:.4f}'.format(loss=test_loss.avg, dice=test_precision.avg))

        # summary
        writer.scalar_summary("Loss/loss", {"train": train_loss.avg, "test": test_loss.avg}, epoch)
        writer.scalar_summary("Loss/precision", {"train": train_precision.avg, "test": test_precision.avg}, epoch)

        writer.close()

整体代码

import os
import random
import numpy as np
import datetime
import torch
import torch.nn as nn
from torch.utils.data import DataLoader

import torchvision
from torchvision import transforms

import argparse
from tqdm import tqdm

import matplotlib.pyplot as plt
from torch.utils.tensorboard import SummaryWriter

"""Reproduction experiment"""
def setup_seed(seed):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    # torch.backends.cudnn.benchmark = False
    # torch.backends.cudnn.enabled = False
    # torch.backends.cudnn.deterministic = True


"""data related"""
def _base_options():
    parser = argparse.ArgumentParser(description="Train setting for FashionMNIST")
    # about dataset
    parser.add_argument('--batch_size', default=8, type=int, help='the batch size of dataset')
    parser.add_argument('--num_works', default=4, type=int, help="the num_works used")
    # train
    parser.add_argument('--epochs', default=100, type=int, help='train iterations')
    parser.add_argument('--lr', default=0.001, type=float, help='learning rate')
    parser.add_argument('--model', default="SimpleNet", choices=["SimpleNet"], help="the model choosed")
    # log dir
    parser.add_argument('--log_dir', default="./logger/", help='the path of log file')
    #
    parser.add_argument('--best_dice', default=-100, type=int, help='for save weight')
    parser.add_argument('--weight_dir', default="./weight/", help='the dir for save weight')

    args = parser.parse_args()
    return args

def _load_data():
    """download the data, and generate the dataloader"""
    trans = transforms.Compose([transforms.ToTensor()])

    train_dataset = torchvision.datasets.FashionMNIST(root='./data/', train=True, download=True, transform=trans)
    test_dataset = torchvision.datasets.FashionMNIST(root='./data/', train=False, download=True, transform=trans)
    # print(len(train_dataset), len(test_dataset))
    train_loader = DataLoader(train_dataset, shuffle=True, batch_size=args.batch_size, num_workers=args.num_works)
    test_loader = DataLoader(test_dataset, shuffle=True, batch_size=args.batch_size, num_workers=args.num_works)

    return (train_loader, test_loader)

def _device():
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    return device

"""display data examples"""
def _image_label(labels):
    text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat',
                  'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']
    return [text_labels[int(i)] for i in labels]


def _show_images(imgs, rows, columns, titles=None, scale=1.5):
    figsize = (rows * scale, columns * 1.5)
    fig, axes = plt.subplots(rows, columns, figsize=figsize)
    axes = axes.flatten()
    for i, (img, ax) in enumerate(zip(imgs, axes)):
        ax.imshow(img)
        ax.axes.get_xaxis().set_visible(False)
        ax.axes.get_yaxis().set_visible(False)
        if titles:
            ax.set_title(titles[i])
    plt.show()
    return axes

def _show_examples():
    train_loader, test_loader = _load_data()

    for images, labels in train_loader:
        images = images.squeeze(1)
        _show_images(images, 3, 3, _image_label(labels))
        break

"""log"""
class _logger():
    def __init__(self, log_dir, log_history=True):
        if log_history:
            log_dir = os.path.join(log_dir, datetime.datetime.now().strftime("%Y_%m_%d__%H_%M_%S"))
        self.summary = SummaryWriter(log_dir)

    def scalar_summary(self, tag, value, step):
        self.summary.add_scalars(tag, value, step)

    def images_summary(self, tag, image_tensor, step):
        self.summary.add_images(tag, image_tensor, step)

    def figure_summary(self, tag, figure, step):
        self.summary.add_figure(tag, figure, step)

    def graph_summary(self, model):
        self.summary.add_graph(model)

    def close(self):
        self.summary.close()

"""evaluate the result"""
class AverageMeter():
    def __init__(self):
        self.reset()

    def reset(self):
        self.val = 0
        self.avg = 0
        self.sum = 0
        self.count = 0

    def update(self, val, n=1):
        self.val = val
        self.sum += val * n
        self.count += n
        self.avg = self.sum / self.count


"""define the Net"""
class Conv3x3(nn.Module):
    def __init__(self, in_channels, out_channels, down_sample=False):
        super(Conv3x3, self).__init__()
        self.conv = nn.Sequential(nn.Conv2d(in_channels, out_channels, 3, 1, 1),
                                  nn.BatchNorm2d(out_channels),
                                  nn.ReLU(inplace=True),
                                  nn.Conv2d(out_channels, out_channels, 3, 1, 1),
                                  nn.BatchNorm2d(out_channels),
                                  nn.ReLU(inplace=True))
        if down_sample:
            self.conv[3] = nn.Conv2d(out_channels, out_channels, 2, 2, 0)

    def forward(self, x):
        return self.conv(x)

class SimpleNet(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(SimpleNet, self).__init__()
        self.conv1 = Conv3x3(in_channels, 32)
        self.conv2 = Conv3x3(32, 64, down_sample=True)
        self.conv3 = Conv3x3(64, 128)
        self.conv4 = Conv3x3(128, 256, down_sample=True)
        self.fc = nn.Linear(256*7*7, out_channels)

    def forward(self, x):
        x = self.conv1(x)
        x = self.conv2(x)
        x = self.conv3(x)
        x = self.conv4(x)

        x = torch.flatten(x, 1)
        out = self.fc(x)
        return out

"""progress of train/test"""
def train(model, train_loader, test_loader, criterion, optimizor, epochs, device, writer, save_weight=False):
    train_loss = AverageMeter()
    test_loss = AverageMeter()
    train_precision = AverageMeter()
    test_precision = AverageMeter()

    time_tick = datetime.datetime.now().strftime("%Y_%m_%d__%H_%M_%S")

    for epoch in range(epochs):
        print('\nEpoch: [%d | %d] LR: %f' % (epoch + 1, args.epochs, args.lr))
        model.train()
        for input, label in tqdm(train_loader):
            input, label = input.to(device), label.to(device)
            output = model(input)
            # backward
            loss = criterion(output, label)
            optimizor.zero_grad()
            loss.backward()
            optimizor.step()

            # logger
            predict = torch.argmax(output, dim=1)
            train_pre = sum(predict == label) / len(label)
            train_loss.update(loss.item(), input.size(0))
            train_precision.update(train_pre.item(), input.size(0))

        model.eval()
        with torch.no_grad():
            for X, y in tqdm(test_loader):
                X, y = X.to(device), y.to(device)
                y_hat = model(X)

                loss_te = criterion(y_hat, y)
                predict_ = torch.argmax(y_hat, dim=1)
                test_pre = sum(predict_ == y) / len(y)

                test_loss.update(loss_te.item(), X.size(0))
                test_precision.update(test_pre.item(), X.size(0))

        if save_weight:
            best_dice = args.best_dice
            weight_dir = os.path.join(args.weight_dir, args.model, time_tick)
            os.makedirs(weight_dir, exist_ok=True)

            monitor_dice = test_precision.avg
            if monitor_dice > best_dice:
                best_dice = max(monitor_dice, best_dice)

                name = os.path.join(weight_dir, args.model + '_' + str(epoch) + \
                       '_test_loss-' + str(round(test_loss.avg, 4)) + \
                       '_test_dice-' + str(round(best_dice, 4)) + '.pt')
                torch.save(model.state_dict(), name)

        print("train" + '---Loss: {loss:.4f} | Dice: {dice:.4f}'.format(loss=train_loss.avg, dice=train_precision.avg))
        print("test " + '---Loss: {loss:.4f} | Dice: {dice:.4f}'.format(loss=test_loss.avg, dice=test_precision.avg))

        # summary
        writer.scalar_summary("Loss/loss", {"train": train_loss.avg, "test": test_loss.avg}, epoch)
        writer.scalar_summary("Loss/precision", {"train": train_precision.avg, "test": test_precision.avg}, epoch)

        writer.close()




if __name__ == "__main__":
    # config
    args = _base_options()
    device = _device()
    # data
    train_loader, test_loader = _load_data()
    # logger
    writer = _logger(log_dir=os.path.join(args.log_dir, args.model))
    # model
    model = SimpleNet(in_channels=1, out_channels=10).to(device)
    optimizor = torch.optim.Adam(model.parameters(), lr=args.lr)
    criterion = nn.CrossEntropyLoss()

    train(model, train_loader, test_loader, criterion, optimizor, args.epochs, device, writer, save_weight=True)


"""    
    args = _base_options()
    _show_examples()  # ———>  样例图片显示
"""

训练过程

Pytorch深度学习—FashionMNIST数据集训练_第2张图片

日志

Pytorch深度学习—FashionMNIST数据集训练_第3张图片

你可能感兴趣的:(学习深度学习,深度学习,pytorch,人工智能)