下面是代码片段
var QR = require("../../utils/scqrcode.js");
codeUrl: 'https://c.djiplant.com/qcode/?scene=', //跳转路径
that.createQrCode(codeUrl, "canvas", 176, 176); //路径,canvasid,宽高
createQrCode(url, canvasId, cavW, cavH, left, top) {
//调用插件中的draw方法,绘制二维码图片
QR.api.draw(url, canvasId, cavW, cavH, left, top);
},
setTimeout(() => {
//获取临时缓存code照片路径,存入data中
wx.canvasToTempFilePath({
canvasId: 'canvas',
success: function (res) {
that.setData({
codeImg: res.tempFilePath
})
}
})
},500)
这是scqrcode.js代码
!(function () {
// alignment pattern
var adelta = [
0, 11, 15, 19, 23, 27, 31,
16, 18, 20, 22, 24, 26, 28, 20, 22, 24, 24, 26, 28, 28, 22, 24, 24,
26, 26, 28, 28, 24, 24, 26, 26, 26, 28, 28, 24, 26, 26, 26, 28, 28
];
// version block
var vpat = [
0xc94, 0x5bc, 0xa99, 0x4d3, 0xbf6, 0x762, 0x847, 0x60d,
0x928, 0xb78, 0x45d, 0xa17, 0x532, 0x9a6, 0x683, 0x8c9,
0x7ec, 0xec4, 0x1e1, 0xfab, 0x08e, 0xc1a, 0x33f, 0xd75,
0x250, 0x9d5, 0x6f0, 0x8ba, 0x79f, 0xb0b, 0x42e, 0xa64,
0x541, 0xc69
];
// final format bits with mask: level << 3 | mask
var fmtword = [
0x77c4, 0x72f3, 0x7daa, 0x789d, 0x662f, 0x6318, 0x6c41, 0x6976, //L
0x5412, 0x5125, 0x5e7c, 0x5b4b, 0x45f9, 0x40ce, 0x4f97, 0x4aa0, //M
0x355f, 0x3068, 0x3f31, 0x3a06, 0x24b4, 0x2183, 0x2eda, 0x2bed, //Q
0x1689, 0x13be, 0x1ce7, 0x19d0, 0x0762, 0x0255, 0x0d0c, 0x083b //H
];
// 4 per version: number of blocks 1,2; data width; ecc width
var eccblocks = [
1, 0, 19, 7, 1, 0, 16, 10, 1, 0, 13, 13, 1, 0, 9, 17,
1, 0, 34, 10, 1, 0, 28, 16, 1, 0, 22, 22, 1, 0, 16, 28,
1, 0, 55, 15, 1, 0, 44, 26, 2, 0, 17, 18, 2, 0, 13, 22,
1, 0, 80, 20, 2, 0, 32, 18, 2, 0, 24, 26, 4, 0, 9, 16,
1, 0, 108, 26, 2, 0, 43, 24, 2, 2, 15, 18, 2, 2, 11, 22,
2, 0, 68, 18, 4, 0, 27, 16, 4, 0, 19, 24, 4, 0, 15, 28,
2, 0, 78, 20, 4, 0, 31, 18, 2, 4, 14, 18, 4, 1, 13, 26,
2, 0, 97, 24, 2, 2, 38, 22, 4, 2, 18, 22, 4, 2, 14, 26,
2, 0, 116, 30, 3, 2, 36, 22, 4, 4, 16, 20, 4, 4, 12, 24,
2, 2, 68, 18, 4, 1, 43, 26, 6, 2, 19, 24, 6, 2, 15, 28,
4, 0, 81, 20, 1, 4, 50, 30, 4, 4, 22, 28, 3, 8, 12, 24,
2, 2, 92, 24, 6, 2, 36, 22, 4, 6, 20, 26, 7, 4, 14, 28,
4, 0, 107, 26, 8, 1, 37, 22, 8, 4, 20, 24, 12, 4, 11, 22,
3, 1, 115, 30, 4, 5, 40, 24, 11, 5, 16, 20, 11, 5, 12, 24,
5, 1, 87, 22, 5, 5, 41, 24, 5, 7, 24, 30, 11, 7, 12, 24,
5, 1, 98, 24, 7, 3, 45, 28, 15, 2, 19, 24, 3, 13, 15, 30,
1, 5, 107, 28, 10, 1, 46, 28, 1, 15, 22, 28, 2, 17, 14, 28,
5, 1, 120, 30, 9, 4, 43, 26, 17, 1, 22, 28, 2, 19, 14, 28,
3, 4, 113, 28, 3, 11, 44, 26, 17, 4, 21, 26, 9, 16, 13, 26,
3, 5, 107, 28, 3, 13, 41, 26, 15, 5, 24, 30, 15, 10, 15, 28,
4, 4, 116, 28, 17, 0, 42, 26, 17, 6, 22, 28, 19, 6, 16, 30,
2, 7, 111, 28, 17, 0, 46, 28, 7, 16, 24, 30, 34, 0, 13, 24,
4, 5, 121, 30, 4, 14, 47, 28, 11, 14, 24, 30, 16, 14, 15, 30,
6, 4, 117, 30, 6, 14, 45, 28, 11, 16, 24, 30, 30, 2, 16, 30,
8, 4, 106, 26, 8, 13, 47, 28, 7, 22, 24, 30, 22, 13, 15, 30,
10, 2, 114, 28, 19, 4, 46, 28, 28, 6, 22, 28, 33, 4, 16, 30,
8, 4, 122, 30, 22, 3, 45, 28, 8, 26, 23, 30, 12, 28, 15, 30,
3, 10, 117, 30, 3, 23, 45, 28, 4, 31, 24, 30, 11, 31, 15, 30,
7, 7, 116, 30, 21, 7, 45, 28, 1, 37, 23, 30, 19, 26, 15, 30,
5, 10, 115, 30, 19, 10, 47, 28, 15, 25, 24, 30, 23, 25, 15, 30,
13, 3, 115, 30, 2, 29, 46, 28, 42, 1, 24, 30, 23, 28, 15, 30,
17, 0, 115, 30, 10, 23, 46, 28, 10, 35, 24, 30, 19, 35, 15, 30,
17, 1, 115, 30, 14, 21, 46, 28, 29, 19, 24, 30, 11, 46, 15, 30,
13, 6, 115, 30, 14, 23, 46, 28, 44, 7, 24, 30, 59, 1, 16, 30,
12, 7, 121, 30, 12, 26, 47, 28, 39, 14, 24, 30, 22, 41, 15, 30,
6, 14, 121, 30, 6, 34, 47, 28, 46, 10, 24, 30, 2, 64, 15, 30,
17, 4, 122, 30, 29, 14, 46, 28, 49, 10, 24, 30, 24, 46, 15, 30,
4, 18, 122, 30, 13, 32, 46, 28, 48, 14, 24, 30, 42, 32, 15, 30,
20, 4, 117, 30, 40, 7, 47, 28, 43, 22, 24, 30, 10, 67, 15, 30,
19, 6, 118, 30, 18, 31, 47, 28, 34, 34, 24, 30, 20, 61, 15, 30
];
// Galois field log table
var glog = [
0xff, 0x00, 0x01, 0x19, 0x02, 0x32, 0x1a, 0xc6, 0x03, 0xdf, 0x33, 0xee, 0x1b, 0x68, 0xc7, 0x4b,
0x04, 0x64, 0xe0, 0x0e, 0x34, 0x8d, 0xef, 0x81, 0x1c, 0xc1, 0x69, 0xf8, 0xc8, 0x08, 0x4c, 0x71,
0x05, 0x8a, 0x65, 0x2f, 0xe1, 0x24, 0x0f, 0x21, 0x35, 0x93, 0x8e, 0xda, 0xf0, 0x12, 0x82, 0x45,
0x1d, 0xb5, 0xc2, 0x7d, 0x6a, 0x27, 0xf9, 0xb9, 0xc9, 0x9a, 0x09, 0x78, 0x4d, 0xe4, 0x72, 0xa6,
0x06, 0xbf, 0x8b, 0x62, 0x66, 0xdd, 0x30, 0xfd, 0xe2, 0x98, 0x25, 0xb3, 0x10, 0x91, 0x22, 0x88,
0x36, 0xd0, 0x94, 0xce, 0x8f, 0x96, 0xdb, 0xbd, 0xf1, 0xd2, 0x13, 0x5c, 0x83, 0x38, 0x46, 0x40,
0x1e, 0x42, 0xb6, 0xa3, 0xc3, 0x48, 0x7e, 0x6e, 0x6b, 0x3a, 0x28, 0x54, 0xfa, 0x85, 0xba, 0x3d,
0xca, 0x5e, 0x9b, 0x9f, 0x0a, 0x15, 0x79, 0x2b, 0x4e, 0xd4, 0xe5, 0xac, 0x73, 0xf3, 0xa7, 0x57,
0x07, 0x70, 0xc0, 0xf7, 0x8c, 0x80, 0x63, 0x0d, 0x67, 0x4a, 0xde, 0xed, 0x31, 0xc5, 0xfe, 0x18,
0xe3, 0xa5, 0x99, 0x77, 0x26, 0xb8, 0xb4, 0x7c, 0x11, 0x44, 0x92, 0xd9, 0x23, 0x20, 0x89, 0x2e,
0x37, 0x3f, 0xd1, 0x5b, 0x95, 0xbc, 0xcf, 0xcd, 0x90, 0x87, 0x97, 0xb2, 0xdc, 0xfc, 0xbe, 0x61,
0xf2, 0x56, 0xd3, 0xab, 0x14, 0x2a, 0x5d, 0x9e, 0x84, 0x3c, 0x39, 0x53, 0x47, 0x6d, 0x41, 0xa2,
0x1f, 0x2d, 0x43, 0xd8, 0xb7, 0x7b, 0xa4, 0x76, 0xc4, 0x17, 0x49, 0xec, 0x7f, 0x0c, 0x6f, 0xf6,
0x6c, 0xa1, 0x3b, 0x52, 0x29, 0x9d, 0x55, 0xaa, 0xfb, 0x60, 0x86, 0xb1, 0xbb, 0xcc, 0x3e, 0x5a,
0xcb, 0x59, 0x5f, 0xb0, 0x9c, 0xa9, 0xa0, 0x51, 0x0b, 0xf5, 0x16, 0xeb, 0x7a, 0x75, 0x2c, 0xd7,
0x4f, 0xae, 0xd5, 0xe9, 0xe6, 0xe7, 0xad, 0xe8, 0x74, 0xd6, 0xf4, 0xea, 0xa8, 0x50, 0x58, 0xaf
];
// Galios field exponent table
var gexp = [
0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1d, 0x3a, 0x74, 0xe8, 0xcd, 0x87, 0x13, 0x26,
0x4c, 0x98, 0x2d, 0x5a, 0xb4, 0x75, 0xea, 0xc9, 0x8f, 0x03, 0x06, 0x0c, 0x18, 0x30, 0x60, 0xc0,
0x9d, 0x27, 0x4e, 0x9c, 0x25, 0x4a, 0x94, 0x35, 0x6a, 0xd4, 0xb5, 0x77, 0xee, 0xc1, 0x9f, 0x23,
0x46, 0x8c, 0x05, 0x0a, 0x14, 0x28, 0x50, 0xa0, 0x5d, 0xba, 0x69, 0xd2, 0xb9, 0x6f, 0xde, 0xa1,
0x5f, 0xbe, 0x61, 0xc2, 0x99, 0x2f, 0x5e, 0xbc, 0x65, 0xca, 0x89, 0x0f, 0x1e, 0x3c, 0x78, 0xf0,
0xfd, 0xe7, 0xd3, 0xbb, 0x6b, 0xd6, 0xb1, 0x7f, 0xfe, 0xe1, 0xdf, 0xa3, 0x5b, 0xb6, 0x71, 0xe2,
0xd9, 0xaf, 0x43, 0x86, 0x11, 0x22, 0x44, 0x88, 0x0d, 0x1a, 0x34, 0x68, 0xd0, 0xbd, 0x67, 0xce,
0x81, 0x1f, 0x3e, 0x7c, 0xf8, 0xed, 0xc7, 0x93, 0x3b, 0x76, 0xec, 0xc5, 0x97, 0x33, 0x66, 0xcc,
0x85, 0x17, 0x2e, 0x5c, 0xb8, 0x6d, 0xda, 0xa9, 0x4f, 0x9e, 0x21, 0x42, 0x84, 0x15, 0x2a, 0x54,
0xa8, 0x4d, 0x9a, 0x29, 0x52, 0xa4, 0x55, 0xaa, 0x49, 0x92, 0x39, 0x72, 0xe4, 0xd5, 0xb7, 0x73,
0xe6, 0xd1, 0xbf, 0x63, 0xc6, 0x91, 0x3f, 0x7e, 0xfc, 0xe5, 0xd7, 0xb3, 0x7b, 0xf6, 0xf1, 0xff,
0xe3, 0xdb, 0xab, 0x4b, 0x96, 0x31, 0x62, 0xc4, 0x95, 0x37, 0x6e, 0xdc, 0xa5, 0x57, 0xae, 0x41,
0x82, 0x19, 0x32, 0x64, 0xc8, 0x8d, 0x07, 0x0e, 0x1c, 0x38, 0x70, 0xe0, 0xdd, 0xa7, 0x53, 0xa6,
0x51, 0xa2, 0x59, 0xb2, 0x79, 0xf2, 0xf9, 0xef, 0xc3, 0x9b, 0x2b, 0x56, 0xac, 0x45, 0x8a, 0x09,
0x12, 0x24, 0x48, 0x90, 0x3d, 0x7a, 0xf4, 0xf5, 0xf7, 0xf3, 0xfb, 0xeb, 0xcb, 0x8b, 0x0b, 0x16,
0x2c, 0x58, 0xb0, 0x7d, 0xfa, 0xe9, 0xcf, 0x83, 0x1b, 0x36, 0x6c, 0xd8, 0xad, 0x47, 0x8e, 0x00
];
// Working buffers:
// data input and ecc append, image working buffer, fixed part of image, run lengths for badness
var strinbuf = [],
eccbuf = [],
qrframe = [],
framask = [],
rlens = [];
// Control values - width is based on version, last 4 are from table.
var version, width, neccblk1, neccblk2, datablkw, eccblkwid;
var ecclevel = 2;
// set bit to indicate cell in qrframe is immutable. symmetric around diagonal
function setmask(x, y) {
var bt;
if (x > y) {
bt = x;
x = y;
y = bt;
}
// y*y = 1+3+5...
bt = y;
bt *= y;
bt += y;
bt >>= 1;
bt += x;
framask[bt] = 1;
}
// enter alignment pattern - black to qrframe, white to mask (later black frame merged to mask)
function putalign(x, y) {
var j;
qrframe[x + width * y] = 1;
for (j = -2; j < 2; j++) {
qrframe[(x + j) + width * (y - 2)] = 1;
qrframe[(x - 2) + width * (y + j + 1)] = 1;
qrframe[(x + 2) + width * (y + j)] = 1;
qrframe[(x + j + 1) + width * (y + 2)] = 1;
}
for (j = 0; j < 2; j++) {
setmask(x - 1, y + j);
setmask(x + 1, y - j);
setmask(x - j, y - 1);
setmask(x + j, y + 1);
}
}
//========================================================================
// Reed Solomon error correction
// exponentiation mod N
function modnn(x) {
while (x >= 255) {
x -= 255;
x = (x >> 8) + (x & 255);
}
return x;
}
var genpoly = [];
// Calculate and append ECC data to data block. Block is in strinbuf, indexes to buffers given.
function appendrs(data, dlen, ecbuf, eclen) {
var i, j, fb;
for (i = 0; i < eclen; i++)
strinbuf[ecbuf + i] = 0;
for (i = 0; i < dlen; i++) {
fb = glog[strinbuf[data + i] ^ strinbuf[ecbuf]];
if (fb != 255) /* fb term is non-zero */
for (j = 1; j < eclen; j++)
strinbuf[ecbuf + j - 1] = strinbuf[ecbuf + j] ^ gexp[modnn(fb + genpoly[eclen - j])];
else
for (j = ecbuf; j < ecbuf + eclen; j++)
strinbuf[j] = strinbuf[j + 1];
strinbuf[ecbuf + eclen - 1] = fb == 255 ? 0 : gexp[modnn(fb + genpoly[0])];
}
}
//========================================================================
// Frame data insert following the path rules
// check mask - since symmetrical use half.
function ismasked(x, y) {
var bt;
if (x > y) {
bt = x;
x = y;
y = bt;
}
bt = y;
bt += y * y;
bt >>= 1;
bt += x;
return framask[bt];
}
//========================================================================
// Apply the selected mask out of the 8.
function applymask(m) {
var x, y, r3x, r3y;
switch (m) {
case 0:
for (y = 0; y < width; y++)
for (x = 0; x < width; x++)
if (!((x + y) & 1) && !ismasked(x, y))
qrframe[x + y * width] ^= 1;
break;
case 1:
for (y = 0; y < width; y++)
for (x = 0; x < width; x++)
if (!(y & 1) && !ismasked(x, y))
qrframe[x + y * width] ^= 1;
break;
case 2:
for (y = 0; y < width; y++)
for (r3x = 0, x = 0; x < width; x++, r3x++) {
if (r3x == 3)
r3x = 0;
if (!r3x && !ismasked(x, y))
qrframe[x + y * width] ^= 1;
}
break;
case 3:
for (r3y = 0, y = 0; y < width; y++, r3y++) {
if (r3y == 3)
r3y = 0;
for (r3x = r3y, x = 0; x < width; x++, r3x++) {
if (r3x == 3)
r3x = 0;
if (!r3x && !ismasked(x, y))
qrframe[x + y * width] ^= 1;
}
}
break;
case 4:
for (y = 0; y < width; y++)
for (r3x = 0, r3y = ((y >> 1) & 1), x = 0; x < width; x++, r3x++) {
if (r3x == 3) {
r3x = 0;
r3y = !r3y;
}
if (!r3y && !ismasked(x, y))
qrframe[x + y * width] ^= 1;
}
break;
case 5:
for (r3y = 0, y = 0; y < width; y++, r3y++) {
if (r3y == 3)
r3y = 0;
for (r3x = 0, x = 0; x < width; x++, r3x++) {
if (r3x == 3)
r3x = 0;
if (!((x & y & 1) + !(!r3x | !r3y)) && !ismasked(x, y))
qrframe[x + y * width] ^= 1;
}
}
break;
case 6:
for (r3y = 0, y = 0; y < width; y++, r3y++) {
if (r3y == 3)
r3y = 0;
for (r3x = 0, x = 0; x < width; x++, r3x++) {
if (r3x == 3)
r3x = 0;
if (!(((x & y & 1) + (r3x && (r3x == r3y))) & 1) && !ismasked(x, y))
qrframe[x + y * width] ^= 1;
}
}
break;
case 7:
for (r3y = 0, y = 0; y < width; y++, r3y++) {
if (r3y == 3)
r3y = 0;
for (r3x = 0, x = 0; x < width; x++, r3x++) {
if (r3x == 3)
r3x = 0;
if (!(((r3x && (r3x == r3y)) + ((x + y) & 1)) & 1) && !ismasked(x, y))
qrframe[x + y * width] ^= 1;
}
}
break;
}
return;
}
// Badness coefficients.
var N1 = 3,
N2 = 3,
N3 = 40,
N4 = 10;
// Using the table of the length of each run, calculate the amount of bad image
// - long runs or those that look like finders; called twice, once each for X and Y
function badruns(length) {
var i;
var runsbad = 0;
for (i = 0; i <= length; i++)
if (rlens[i] >= 5)
runsbad += N1 + rlens[i] - 5;
// BwBBBwB as in finder
for (i = 3; i < length - 1; i += 2)
if (rlens[i - 2] == rlens[i + 2] &&
rlens[i + 2] == rlens[i - 1] &&
rlens[i - 1] == rlens[i + 1] &&
rlens[i - 1] * 3 == rlens[i]
// white around the black pattern? Not part of spec
&&
(rlens[i - 3] == 0 // beginning
||
i + 3 > length // end
||
rlens[i - 3] * 3 >= rlens[i] * 4 || rlens[i + 3] * 3 >= rlens[i] * 4)
)
runsbad += N3;
return runsbad;
}
// Calculate how bad the masked image is - blocks, imbalance, runs, or finders.
function badcheck() {
var x, y, h, b, b1;
var thisbad = 0;
var bw = 0;
// blocks of same color.
for (y = 0; y < width - 1; y++)
for (x = 0; x < width - 1; x++)
if ((qrframe[x + width * y] && qrframe[(x + 1) + width * y] &&
qrframe[x + width * (y + 1)] && qrframe[(x + 1) + width * (y + 1)]) // all black
||
!(qrframe[x + width * y] || qrframe[(x + 1) + width * y] ||
qrframe[x + width * (y + 1)] || qrframe[(x + 1) + width * (y + 1)])) // all white
thisbad += N2;
// X runs
for (y = 0; y < width; y++) {
rlens[0] = 0;
for (h = b = x = 0; x < width; x++) {
if ((b1 = qrframe[x + width * y]) == b)
rlens[h]++;
else
rlens[++h] = 1;
b = b1;
bw += b ? 1 : -1;
}
thisbad += badruns(h);
}
// black/white imbalance
if (bw < 0)
bw = -bw;
var big = bw;
var count = 0;
big += big << 2;
big <<= 1;
while (big > width * width)
big -= width * width, count++;
thisbad += count * N4;
// Y runs
for (x = 0; x < width; x++) {
rlens[0] = 0;
for (h = b = y = 0; y < width; y++) {
if ((b1 = qrframe[x + width * y]) == b)
rlens[h]++;
else
rlens[++h] = 1;
b = b1;
}
thisbad += badruns(h);
}
return thisbad;
}
function genframe(instring) {
var x, y, k, t, v, i, j, m;
// find the smallest version that fits the string
t = instring.length;
version = 0;
do {
version++;
k = (ecclevel - 1) * 4 + (version - 1) * 16;
neccblk1 = eccblocks[k++];
neccblk2 = eccblocks[k++];
datablkw = eccblocks[k++];
eccblkwid = eccblocks[k];
k = datablkw * (neccblk1 + neccblk2) + neccblk2 - 3 + (version <= 9);
if (t <= k)
break;
} while (version < 40);
// FIXME - insure that it fits insted of being truncated
width = 17 + 4 * version;
// allocate, clear and setup data structures
v = datablkw + (datablkw + eccblkwid) * (neccblk1 + neccblk2) + neccblk2;
for (t = 0; t < v; t++)
eccbuf[t] = 0;
strinbuf = instring.slice(0);
for (t = 0; t < width * width; t++)
qrframe[t] = 0;
for (t = 0; t < (width * (width + 1) + 1) / 2; t++)
framask[t] = 0;
// insert finders - black to frame, white to mask
for (t = 0; t < 3; t++) {
k = 0;
y = 0;
if (t == 1)
k = (width - 7);
if (t == 2)
y = (width - 7);
qrframe[(y + 3) + width * (k + 3)] = 1;
for (x = 0; x < 6; x++) {
qrframe[(y + x) + width * k] = 1;
qrframe[y + width * (k + x + 1)] = 1;
qrframe[(y + 6) + width * (k + x)] = 1;
qrframe[(y + x + 1) + width * (k + 6)] = 1;
}
for (x = 1; x < 5; x++) {
setmask(y + x, k + 1);
setmask(y + 1, k + x + 1);
setmask(y + 5, k + x);
setmask(y + x + 1, k + 5);
}
for (x = 2; x < 4; x++) {
qrframe[(y + x) + width * (k + 2)] = 1;
qrframe[(y + 2) + width * (k + x + 1)] = 1;
qrframe[(y + 4) + width * (k + x)] = 1;
qrframe[(y + x + 1) + width * (k + 4)] = 1;
}
}
// alignment blocks
if (version > 1) {
t = adelta[version];
y = width - 7;
for (;;) {
x = width - 7;
while (x > t - 3) {
putalign(x, y);
if (x < t)
break;
x -= t;
}
if (y <= t + 9)
break;
y -= t;
putalign(6, y);
putalign(y, 6);
}
}
// single black
qrframe[8 + width * (width - 8)] = 1;
// timing gap - mask only
for (y = 0; y < 7; y++) {
setmask(7, y);
setmask(width - 8, y);
setmask(7, y + width - 7);
}
for (x = 0; x < 8; x++) {
setmask(x, 7);
setmask(x + width - 8, 7);
setmask(x, width - 8);
}
// reserve mask-format area
for (x = 0; x < 9; x++)
setmask(x, 8);
for (x = 0; x < 8; x++) {
setmask(x + width - 8, 8);
setmask(8, x);
}
for (y = 0; y < 7; y++)
setmask(8, y + width - 7);
// timing row/col
for (x = 0; x < width - 14; x++)
if (x & 1) {
setmask(8 + x, 6);
setmask(6, 8 + x);
}
else {
qrframe[(8 + x) + width * 6] = 1;
qrframe[6 + width * (8 + x)] = 1;
}
// version block
if (version > 6) {
t = vpat[version - 7];
k = 17;
for (x = 0; x < 6; x++)
for (y = 0; y < 3; y++, k--)
if (1 & (k > 11 ? version >> (k - 12) : t >> k)) {
qrframe[(5 - x) + width * (2 - y + width - 11)] = 1;
qrframe[(2 - y + width - 11) + width * (5 - x)] = 1;
}
else {
setmask(5 - x, 2 - y + width - 11);
setmask(2 - y + width - 11, 5 - x);
}
}
// sync mask bits - only set above for white spaces, so add in black bits
for (y = 0; y < width; y++)
for (x = 0; x <= y; x++)
if (qrframe[x + width * y])
setmask(x, y);
// convert string to bitstream
// 8 bit data to QR-coded 8 bit data (numeric or alphanum, or kanji not supported)
v = strinbuf.length;
// string to array
for (i = 0; i < v; i++)
eccbuf[i] = strinbuf.charCodeAt(i);
strinbuf = eccbuf.slice(0);
// calculate max string length
x = datablkw * (neccblk1 + neccblk2) + neccblk2;
if (v >= x - 2) {
v = x - 2;
if (version > 9)
v--;
}
// shift and repack to insert length prefix
i = v;
if (version > 9) {
strinbuf[i + 2] = 0;
strinbuf[i + 3] = 0;
while (i--) {
t = strinbuf[i];
strinbuf[i + 3] |= 255 & (t << 4);
strinbuf[i + 2] = t >> 4;
}
strinbuf[2] |= 255 & (v << 4);
strinbuf[1] = v >> 4;
strinbuf[0] = 0x40 | (v >> 12);
} else {
strinbuf[i + 1] = 0;
strinbuf[i + 2] = 0;
while (i--) {
t = strinbuf[i];
strinbuf[i + 2] |= 255 & (t << 4);
strinbuf[i + 1] = t >> 4;
}
strinbuf[1] |= 255 & (v << 4);
strinbuf[0] = 0x40 | (v >> 4);
}
// fill to end with pad pattern
i = v + 3 - (version < 10);
while (i < x) {
strinbuf[i++] = 0xec;
// buffer has room if (i == x) break;
strinbuf[i++] = 0x11;
}
// calculate and append ECC
// calculate generator polynomial
genpoly[0] = 1;
for (i = 0; i < eccblkwid; i++) {
genpoly[i + 1] = 1;
for (j = i; j > 0; j--)
genpoly[j] = genpoly[j] ?
genpoly[j - 1] ^ gexp[modnn(glog[genpoly[j]] + i)] : genpoly[j - 1];
genpoly[0] = gexp[modnn(glog[genpoly[0]] + i)];
}
for (i = 0; i <= eccblkwid; i++)
genpoly[i] = glog[genpoly[i]]; // use logs for genpoly[] to save calc step
// append ecc to data buffer
k = x;
y = 0;
for (i = 0; i < neccblk1; i++) {
appendrs(y, datablkw, k, eccblkwid);
y += datablkw;
k += eccblkwid;
}
for (i = 0; i < neccblk2; i++) {
appendrs(y, datablkw + 1, k, eccblkwid);
y += datablkw + 1;
k += eccblkwid;
}
// interleave blocks
y = 0;
for (i = 0; i < datablkw; i++) {
for (j = 0; j < neccblk1; j++)
eccbuf[y++] = strinbuf[i + j * datablkw];
for (j = 0; j < neccblk2; j++)
eccbuf[y++] = strinbuf[(neccblk1 * datablkw) + i + (j * (datablkw + 1))];
}
for (j = 0; j < neccblk2; j++)
eccbuf[y++] = strinbuf[(neccblk1 * datablkw) + i + (j * (datablkw + 1))];
for (i = 0; i < eccblkwid; i++)
for (j = 0; j < neccblk1 + neccblk2; j++)
eccbuf[y++] = strinbuf[x + i + j * eccblkwid];
strinbuf = eccbuf;
// pack bits into frame avoiding masked area.
x = y = width - 1;
k = v = 1; // up, minus
/* inteleaved data and ecc codes */
m = (datablkw + eccblkwid) * (neccblk1 + neccblk2) + neccblk2;
for (i = 0; i < m; i++) {
t = strinbuf[i];
for (j = 0; j < 8; j++, t <<= 1) {
if (0x80 & t)
qrframe[x + width * y] = 1;
do { // find next fill position
if (v)
x--;
else {
x++;
if (k) {
if (y != 0)
y--;
else {
x -= 2;
k = !k;
if (x == 6) {
x--;
y = 9;
}
}
} else {
if (y != width - 1)
y++;
else {
x -= 2;
k = !k;
if (x == 6) {
x--;
y -= 8;
}
}
}
}
v = !v;
} while (ismasked(x, y));
}
}
// save pre-mask copy of frame
strinbuf = qrframe.slice(0);
t = 0; // best
y = 30000; // demerit
// for instead of while since in original arduino code
// if an early mask was "good enough" it wouldn't try for a better one
// since they get more complex and take longer.
for (k = 0; k < 8; k++) {
applymask(k); // returns black-white imbalance
x = badcheck();
if (x < y) { // current mask better than previous best?
y = x;
t = k;
}
if (t == 7)
break; // don't increment i to a void redoing mask
qrframe = strinbuf.slice(0); // reset for next pass
}
if (t != k) // redo best mask - none good enough, last wasn't t
applymask(t);
// add in final mask/ecclevel bytes
y = fmtword[t + ((ecclevel - 1) << 3)];
// low byte
for (k = 0; k < 8; k++, y >>= 1)
if (y & 1) {
qrframe[(width - 1 - k) + width * 8] = 1;
if (k < 6)
qrframe[8 + width * k] = 1;
else
qrframe[8 + width * (k + 1)] = 1;
}
// high byte
for (k = 0; k < 7; k++, y >>= 1)
if (y & 1) {
qrframe[8 + width * (width - 7 + k)] = 1;
if (k)
qrframe[(6 - k) + width * 8] = 1;
else
qrframe[7 + width * 8] = 1;
}
return qrframe;
}
var _canvas = null;
var api = {
get ecclevel() {
return ecclevel;
},
set ecclevel(val) {
ecclevel = val;
},
get size() {
return _size;
},
set size(val) {
_size = val
},
get canvas() {
return _canvas;
},
set canvas(el) {
_canvas = el;
},
getFrame: function (string) {
return genframe(string);
},
utf16to8: function (str) {
var out, i, len, c;
out = "";
len = str.length;
for (i = 0; i < len; i++) {
c = str.charCodeAt(i);
if ((c >= 0x0001) && (c <= 0x007F)) {
out += str.charAt(i);
} else if (c > 0x07FF) {
out += String.fromCharCode(0xE0 | ((c >> 12) & 0x0F));
out += String.fromCharCode(0x80 | ((c >> 6) & 0x3F));
out += String.fromCharCode(0x80 | ((c >> 0) & 0x3F));
} else {
out += String.fromCharCode(0xC0 | ((c >> 6) & 0x1F));
out += String.fromCharCode(0x80 | ((c >> 0) & 0x3F));
}
}
return out;
},
draw: function (str, canvas, cavW, cavH, $this, ecc) {
var that = this;
ecclevel = ecc || ecclevel;
canvas = canvas || _canvas;
if (!canvas) {
console.warn('No canvas provided to draw QR code in!')
return;
}
var size = Math.min(cavW, cavH);
str = that.utf16to8(str);
var frame = that.getFrame(str),
ctx = wx.createCanvasContext(canvas, $this),
// px = Math.round(size / (width + 8));
// var roundedSize = px * (width + 8),
px = Math.round(size / (width + 0));
var roundedSize = px * (width + 0),
offset = Math.floor((size - roundedSize) / 2);
size = roundedSize;
//ctx.clearRect(0, 0, cavW, cavW);
ctx.setFillStyle('#ffffff')
ctx.fillRect(0, 0, cavW, cavW);
ctx.setFillStyle('#000000');
for (var i = 0; i < width; i++) {
for (var j = 0; j < width; j++) {
if (frame[j * width + i]) {
ctx.fillRect(px * (0 + i) + offset, px * (0 + j) + offset, px, px);
// ctx.fillRect(px * (4 + i) + offset, px * (4 + j) + offset, px, px);
}
}
}
ctx.draw(); //true
}
}
module.exports = {
api
}
// exports.draw = api;
})();