- 【思维导图实战派T5】17/21 《未来简史》第三部分(第8-11章)
思维导图实战派_沈怡芳
今天换了种方式画线条,先画出一个分支所有线条再写字(当然是在有草图的情形下),这个好处是线条出手时画的流畅些,但由于画时紧张,反而不舒展,有时还是喜欢回头描,这个习惯挺顽固,只有多多练习。今天完成了全部章节的阅读,明天整合。图片发自App图片发自App
- 阿里云服务器8核16G可选实例规格、收费标准及活动报价分
阿里云最新优惠和活动汇总
阿里云ECS云服务器分为多种规格,8核16G的云服务器可选的规格有:计算平衡增强型c6e、计算型c6、高主频计算型hfc6、存储增强计算型c7se、计算型c5、计算型c7、高主频计算型hfc5、共享标准型s6、突发性能实例t5、计算网络增强型sn1ne、共享计算型n4等,不同规格的云服务器有不同的使用场景,下面是阿里云8核16G云服务器可选实例规格、收费标准及活动报价分享。阿里云服务器图.png一
- 【AI大模型】LLM模型架构深度解析:BERT vs. GPT vs. T5
我爱一条柴ya
学习AI记录ai人工智能AI编程python
引言Transformer架构的诞生(Vaswanietal.,2017)彻底改变了自然语言处理(NLP)。在其基础上,BERT、GPT和T5分别代表了三种不同的模型范式,主导了预训练语言模型的演进。理解它们的差异是LLM开发和学习的基石。一、核心架构对比特性BERT(BidirectionalEncoder)GPT(GenerativePre-trainedTransformer)T5(Text
- 四种微调技术详解:SFT 监督微调、LoRA 微调、P-tuning v2、Freeze 监督微调方法
当谈到人工智能大语言模型的微调技术时,我们进入了一个令人兴奋的领域。这些大型预训练模型,如GPT-3、BERT和T5,拥有卓越的自然语言处理能力,但要使它们在特定任务上表现出色,就需要进行微调,以使其适应特定的数据和任务需求。在这篇文章中,我们将深入探讨四种不同的人工智能大语言模型微调技术:SFT监督微调、LoRA微调方法、P-tuningv2微调方法和Freeze监督微调方法。第一部分:SFT监
- Dimba: Transformer-Mamba Diffusion Models————3 Methodology
图解图片中的每个模块详解1.文本输入(Text)描述:输入的文本描述了一个具有具体特征的场景。功能:提供关于要生成图像的详细信息。2.T5模型(TexttoFeature)描述:使用T5模型将文本转换为特征向量。功能:提取文本中的语义信息,为后续的图像生成提供条件。3.图像输入(Image)描述:输入图像通过变分自编码器(VAE)编码器处理。功能:将图像转换为潜在表示,用于添加噪声并进行扩散过程。
- 【大模型开发】Hugging Face的Transformers库详解介绍与案例
云博士的AI课堂
大模型技术开发与实践哈佛博后带你玩转机器学习深度学习transformerhuggingface大模型技术大模型开发deepseek机器学习深度学习
深入解析HuggingFaceTransformers及开源大模型微调实践HuggingFaceTransformers已成为自然语言处理(NLP)乃至多模态(跨语言、图像、音频等)应用中最为流行、功能最完备的开源框架之一。它将主流的预训练模型(如BERT、GPT、T5、VisionTransformer等)统一整合在同一套API下,并提供了丰富的工具支持快速训练、推理与部署。本篇文章将:介绍Hu
- 基于 GQA 与 MoE 的古诗词生成模型优化 llm项目以及对应八股
许愿与你永世安宁
自用大模型八股rnnnlpberttransformer人工智能深度学习word2vec
目录项目项目背景个人贡献成果产出词嵌入Word2Vec两种训练方式:两种加速训练的方法:GloVe(GlobalVectorsforWordRepresentation)FastTextMHA、GQA、MLApromptengineering位置编码正余弦编码(三角式)可学习位置编码(训练式)经典相对位置编码T5相对位置编码RotaryPositionEmbedding(RoPE)attentio
- 大模型模型推理的成本过高,如何进行量化或蒸馏优化
大模型大数据攻城狮
大模型量化知识蒸馏python面试BERT量化感知prompt
在人工智能的浪潮中,大模型已经成为推动技术革新的核心引擎。从自然语言处理到图像生成,再到复杂的多模态任务,像GPT、BERT、T5这样的庞大模型展现出了惊人的能力。它们在翻译、对话系统、内容生成等领域大放异彩,甚至在医疗、金融等行业中也开始扮演重要角色。可以说,这些模型正在重塑我们对智能的理解,也为无数应用场景注入了新的可能性。然而,伴随着强大性能而来的,是令人咋舌的推理成本。想象一下,运行一个拥
- T5和GPT哪个更强大
Ash Butterfield
自然语言处理(NLP)专栏gpt
一图速览:T5vsGPT对比总结维度T5(Text-to-TextTransferTransformer)GPT(GenerativePretrainedTransformer)模型类型编码器-解码器(Encoder-Decoder)解码器-only(Decoder-only)训练目标将一切任务转化为“文本到文本”的转换问题(如翻译、摘要、QA)语言建模(预测下一个token)设计理念通用统一框架
- 自然语言处理学习路线
熬夜造bug
自然语言处理(NLP)自然语言处理学习人工智能python
学习目标NLP系统知识(从入门到入土)学习内容NLP的基本流程:自然语言处理学习路线(1)——NLP的基本流程-CSDN博客语料预处理:(待更)特征工程之向量化(word——>vector):(待更)特征工程之特征选择:(待更)序列网络在NLP领域的应用(RNN、GRU、LSTM):(待更)预训练模型(ELMO、Bert、T5、GPT、Transformer):(待更)文本分类(Fasttext、
- Transformer大模型实战 针对下游任务进行微调
AI大模型应用之禅
javapythonjavascriptkotlingolang架构人工智能
Transformer,微调,下游任务,自然语言处理,预训练模型,迁移学习,计算机视觉1.背景介绍近年来,深度学习在人工智能领域取得了突破性进展,其中Transformer模型凭借其强大的序列建模能力,在自然语言处理(NLP)领域取得了显著成就。BERT、GPT、T5等基于Transformer的预训练模型,在文本分类、机器翻译、问答系统等任务上展现出令人惊叹的性能。然而,这些预训练模型通常在大型
- 【蓝桥杯真题精讲】第 16 届 Python A 组(省赛)
Mr_Dwj
数据结构与算法蓝桥杯python
文章目录T1偏蓝(5'/5')T2IPv6(0'/5')T32025图形(10'/10')T4最大数字(10'/10')T5倒水(15'/15')T6拼好数(0'/15')T7登山(20'/20')T8原料采购(20'/20')更好的阅读体验:https://wiki.dwj601.cn/ds-and-algo/lan-qiao-cup/16th-python-a/官方还没有开放评测,洛谷开放了全
- 【NLP】34. 数据专题:如何打造高质量训练数据集
pen-ai
机器学习深度学习自然语言处理人工智能
构建大语言模型的秘密武器:如何打造高质量训练数据集?在大语言模型(LLM)如GPT、BERT、T5爆发式发展的背后,我们常常关注模型架构的演化,却忽视了一个更基础也更关键的问题:训练数据从哪里来?这些数据是如何清洗、筛选和标注的?本篇博客将系统梳理LLM数据构建中的核心流程,以FineWeb为例,揭示如何打造一个有规模、有质量、无偏见的训练语料,并讨论相关的伦理与公平性问题。一、构建语料第一步:F
- GPT 经验
AI Echoes
gpt
GPT经验篇一、gpt源码past_key_value是干啥的?二、gptonebyone每一层怎么输入输出?三、bert和gpt有什么区别四、文本生成的几大预训练任务?五、讲讲T5和Bart的区别,讲讲bart的DAE任务?六、讲讲Bart和Bert的区别?七、gpt3和gpt2的区别?致谢一、gpt源码past_key_value是干啥的?在GPT(GenerativePre-trainedT
- Python Transformer 库及使用方法
学亮编程手记
Pythonchatgptpythontransformer开发语言
Python中的Transformer库及使用方法一、库的概述HuggingFaceTransformers是自然语言处理(NLP)领域最流行的开源库之一,支持基于Transformer架构的预训练模型(如BERT、GPT、T5等),覆盖文本、图像、音频等多模态任务。其核心功能包括:预训练模型:支持数百种模型,适配文本分类、生成、翻译、问答等任务。分词与工具链:提供高效的分词器(Tokenizer
- 常见的encoder decoder架构有哪些
强化学习曾小健
架构
答案常见的Encoder-Decoder架构包括以下几种:T5(Text-to-TextTransferTransformer):将所有自然语言处理任务转化为文本到文本的形式,适用于多种任务,如翻译、摘要和问答。BART(BidirectionalandAuto-RegressiveTransformers):结合了自回归和双向编码的优点,适用于文本生成和理解任务。Seq2Seq:经典的序列到序列
- Transformer理解
慢慢变
transformer深度学习人工智能
Transformer是一种基于自注意力机制(Self-Attention)的深度学习模型架构,由Vaswani等人在2017年的论文《AttentionIsAllYouNeed》中首次提出。它在自然语言处理(NLP)领域取得了革命性的成功,成为许多先进模型(如BERT、GPT系列、T5等)的基础架构。以下是对Transformer的详细理解:1.Transformer的核心概念2.解码器(Dec
- HarmonyOS应用开发者高级试题006
code36
harmonyos
一、判断题1、用户首选项是关系型数据库。F2、使用http模块发起网络请求时,必须要使用on"headersReceive")订阅请求头,请求才会成功。F3、一个应用是由一个或多个HAP组成。T4、开发者将应用上架应用市场后,终端设备用户可以在终端设备上使用应用市场进行应用的安装和卸载。T5、预览器支持对页面的预览,如果代码中涉及到一些网络、数据库、传感器等功能的开发,则可以使用模拟器或者真机进行
- 基于Hugging Face的Transformer实战
小诸葛IT课堂
transformer深度学习人工智能
一、为什么选择HuggingFace?HuggingFace生态提供:30,000+预训练模型(BERT、GPT、T5等)统一的TransformerAPI接口快速实现下游任务迁移企业级部署工具(Optimum、InferenceEndpoints)二、文本分类实战:IMDB影评情感分析1.环境安装与数据准备pipinstalltransformersdatasetsevaluateacc
- Transformer 架构对比:Dense、MoE 与 Hybrid-MoE 的优劣分析
m0_74825656
面试学习路线阿里巴巴transformer架构深度学习
1.LLM基础架构类型DenseTransformerMoE(MixtureofExperts)TransformerHybrid-MoETransformer2.Transformer按照编码方式分类单向自回归模型(如早期GPT系列)双向模型(如BERT)编码器-解码器模型(如BART,T5)DenseTransformerDenseTransformer的优势是什么DenseTransform
- 基于ChatGPT、GIS与Python机器学习的地质灾害风险评估、易发性分析、信息化建库及灾后重建高级实践
weixin_贾
防洪评价风险评估滑坡泥石流地质灾害
第一章、ChatGPT、DeepSeek大语言模型提示词与地质灾害基础及平台介绍【基础实践篇】1、什么是大模型?大模型(LargeLanguageModel,LLM)是一种基于深度学习技术的大规模自然语言处理模型。代表性大模型:GPT-4、BERT、T5、ChatGPT等。特点:多任务能力:可以完成文本生成、分类、翻译、问答等任务。上下文理解:能理解复杂的上下文信息。广泛适配性:适合科研、教育、行
- AI在项目中的应用
酒江
人工智能
AI大模型(如GPT-4、BERT、T5等)在各类项目中有广泛的应用,可以极大地提高项目效率、优化流程,并解决许多传统方法难以应对的问题。以下是AI大模型在不同类型项目中的一些具体应用:1.自然语言处理(NLP)文本生成和摘要:AI大模型可以生成高质量的文本内容,自动撰写文章、新闻报道、博客或技术文档,甚至可以进行文献摘要,帮助内容创作者提高效率。情感分析:在客户服务、社交媒体监控或市场研究项目中
- Adapter-Tuning:高效适配预训练模型的新任务
花千树-010
TuningpromptembeddingAIGC机器学习chatgptpytorch
1.引言近年来,预训练语言模型(PLM)如BERT、GPT和T5在自然语言处理(NLP)任务中取得了巨大成功。然而,Fine-Tuning这些大型模型通常需要大量计算资源,并且每个新任务都需要存储一套完整的微调权重,这导致存储成本高昂。Adapter-Tuning作为一种高效的模型调优方法,允许我们在预训练模型的基础上,通过引入轻量级“Adapter”层来进行任务特定的学习。Adapter层只占用
- 【Hugging Face】transformers 库中 model.generate() 方法:自回归模型的文本生成方法
彬彬侠
HuggingFacemodel.generatetransformersHuggingFace文本生成自回归模型GPTLLAMA
HuggingFacemodel.generate方法model.generate是transformers库中的文本生成(TextGeneration)方法,适用于自回归模型(如GPT-2、T5、BART、LLAMA),用于生成文本、摘要、翻译、问答等。1.适用于哪些模型?generate适用于基于Transformer生成文本的模型,例如:GPT-2(AutoModelForCausalLM)
- 【大模型】大模型分类
IT古董
人工智能人工智能大模型
大模型(LargeModels)通常指参数量巨大、计算能力强大的机器学习模型,尤其在自然语言处理(NLP)、计算机视觉(CV)等领域表现突出。以下是大模型的常见分类方式:1.按应用领域分类自然语言处理(NLP)模型如GPT-3、BERT、T5等,主要用于文本生成、翻译、问答等任务。计算机视觉(CV)模型如ResNet、EfficientNet、VisionTransformer(ViT)等,用于图
- 全方位解析:大语言模型评测方法的综合指南
大模型玩家
语言模型人工智能自然语言处理深度学习agi大模型搜索引擎
自2017年Transformer模型提出以来,自然语言处理研究逐步转向基于该框架的预训练模型,如BERT、GPT、BART和T5等。这些预训练模型与下游任务适配后,持续刷新最优结果。然而,现有评测方法存在广度和深度不足、数据偏差、忽视模型其他能力或属性评估等问题。因此,需要全面评测和深入研究模型的各项能力、属性、应用局限性、潜在风险及其可控性等。本文回顾了自然语言处理中的评测基准与指标,将大语言
- ST电机库电流采样:单电阻
Easy·C 麦克法兰
ST电机库单片机嵌入式硬件
一、概述单电阻电流采样的硬件结构如下图:图中可以看出,对于低侧MOS,有下图几种配置(T1、T2、T3分别与T4、T5、T6互补;0表示MOS打开,1表示MOS关闭):使用中心对齐模式,七段SVPWM分段如下图所示,:可知在I、IV、VII分段中,通过ShuntResister的电流为0;而在其他分段中,通过ShuntResister的电流相对于PWM的中心是对称的,由此可以分成两组:1、分段II
- RAG+LLM和直接将整理的知识训练到模型中去有什么区别,各自有什么优缺点
MonkeyKing.sun
RAG+LLM训练模型
1.RAG(Retrieval-AugmentedGeneration)+LLM(LargeLanguageModel)概念RAG是将信息检索与生成模型相结合的一种方法。具体来说,RAG会从一个知识库(如数据库、文档库、向量数据库等)中检索相关的信息片段或条目,然后将这些信息与输入的查询一起传递给一个生成模型(如GPT、T5、BERT等)进行回答生成。这个过程通常包括以下步骤:检索:从一个知识库中
- 大语言模型架构:从基础到进阶,如何理解和演变
运维小子
语言模型人工智能python
引言你可能听说过像ChatGPT这样的AI模型,它们能够理解并生成自然语言文本。这些模型的背后有着复杂的架构和技术,但如果你了解这些架构,就能明白它们是如何工作的。今天,我们将用简单的语言,逐步介绍大语言模型的架构,并且展示这些架构是如何随着时间演变的。1.大语言模型架构概述大语言模型(例如GPT、BERT、T5)是基于神经网络的计算模型,它们通过分析大量文本数据,学习语言的结构和规律。语言模型的
- Python库 - transformers
司南锤
PYTHON库python机器学习python开发语言
transformers库是由HuggingFace开发的一个非常流行的Python库,用于自然语言处理(NLP)任务。它提供了大量的预训练模型,这些模型可以用于各种NLP任务,如文本分类、问答、翻译、摘要生成等。以下是关于transformers库的详细介绍:1.主要特点预训练模型:transformers库包含了多种预训练的语言模型,如BERT、GPT、T5、XLNet等。这些模型在大规模文本
- C/C++Win32编程基础详解视频下载
择善Zach
编程C++Win32
课题视频:C/C++Win32编程基础详解
视频知识:win32窗口的创建
windows事件机制
主讲:择善Uncle老师
学习交流群:386620625
验证码:625
--
- Guava Cache使用笔记
bylijinnan
javaguavacache
1.Guava Cache的get/getIfPresent方法当参数为null时会抛空指针异常
我刚开始使用时还以为Guava Cache跟HashMap一样,get(null)返回null。
实际上Guava整体设计思想就是拒绝null的,很多地方都会执行com.google.common.base.Preconditions.checkNotNull的检查。
2.Guava
- 解决ora-01652无法通过128(在temp表空间中)
0624chenhong
oracle
解决ora-01652无法通过128(在temp表空间中)扩展temp段的过程
一个sql语句后,大约花了10分钟,好不容易有一个结果,但是报了一个ora-01652错误,查阅了oracle的错误代码说明:意思是指temp表空间无法自动扩展temp段。这种问题一般有两种原因:一是临时表空间空间太小,二是不能自动扩展。
分析过程:
既然是temp表空间有问题,那当
- Struct在jsp标签
不懂事的小屁孩
struct
非UI标签介绍:
控制类标签:
1:程序流程控制标签 if elseif else
<s:if test="isUsed">
<span class="label label-success">True</span>
</
- 按对象属性排序
换个号韩国红果果
JavaScript对象排序
利用JavaScript进行对象排序,根据用户的年龄排序展示
<script>
var bob={
name;bob,
age:30
}
var peter={
name;peter,
age:30
}
var amy={
name;amy,
age:24
}
var mike={
name;mike,
age:29
}
var john={
- 大数据分析让个性化的客户体验不再遥远
蓝儿唯美
数据分析
顾客通过多种渠道制造大量数据,企业则热衷于利用这些信息来实现更为个性化的体验。
分析公司Gartner表示,高级分析会成为客户服务的关键,但是大数据分析的采用目前仅局限于不到一成的企业。 挑战在于企业还在努力适应结构化数据,疲于根据自身的客户关系管理(CRM)系统部署有效的分析框架,以及集成不同的内外部信息源。
然而,面对顾客通过数字技术参与而产生的快速变化的信息,企业需要及时作出反应。要想实
- java笔记4
a-john
java
操作符
1,使用java操作符
操作符接受一个或多个参数,并生成一个新值。参数的形式与普通的方法调用不用,但是效果是相同的。加号和一元的正号(+)、减号和一元的负号(-)、乘号(*)、除号(/)以及赋值号(=)的用法与其他编程语言类似。
操作符作用于操作数,生成一个新值。另外,有些操作符可能会改变操作数自身的
- 从裸机编程到嵌入式Linux编程思想的转变------分而治之:驱动和应用程序
aijuans
嵌入式学习
笔者学习嵌入式Linux也有一段时间了,很奇怪的是很多书讲驱动编程方面的知识,也有很多书将ARM9方面的知识,但是从以前51形式的(对寄存器直接操作,初始化芯片的功能模块)编程方法,和思维模式,变换为基于Linux操作系统编程,讲这个思想转变的书几乎没有,让初学者走了很多弯路,撞了很多难墙。
笔者因此写上自己的学习心得,希望能给和我一样转变
- 在springmvc中解决FastJson循环引用的问题
asialee
循环引用fastjson
我们先来看一个例子:
package com.elong.bms;
import java.io.OutputStream;
import java.util.HashMap;
import java.util.Map;
import co
- ArrayAdapter和SimpleAdapter技术总结
百合不是茶
androidSimpleAdapterArrayAdapter高级组件基础
ArrayAdapter比较简单,但它只能用于显示文字。而SimpleAdapter则有很强的扩展性,可以自定义出各种效果
ArrayAdapter;的数据可以是数组或者是队列
// 获得下拉框对象
AutoCompleteTextView textview = (AutoCompleteTextView) this
- 九封信
bijian1013
人生励志
有时候,莫名的心情不好,不想和任何人说话,只想一个人静静的发呆。有时候,想一个人躲起来脆弱,不愿别人看到自己的伤口。有时候,走过熟悉的街角,看到熟悉的背影,突然想起一个人的脸。有时候,发现自己一夜之间就长大了。 2014,写给人
- Linux下安装MySQL Web 管理工具phpMyAdmin
sunjing
PHPInstallphpMyAdmin
PHP http://php.net/
phpMyAdmin http://www.phpmyadmin.net
Error compiling PHP on CentOS x64
一、安装Apache
请参阅http://billben.iteye.com/admin/blogs/1985244
二、安装依赖包
sudo yum install gd
- 分布式系统理论
bit1129
分布式
FLP
One famous theory in distributed computing, known as FLP after the authors Fischer, Lynch, and Patterson, proved that in a distributed system with asynchronous communication and process crashes,
- ssh2整合(spring+struts2+hibernate)-附源码
白糖_
eclipsespringHibernatemysql项目管理
最近抽空又整理了一套ssh2框架,主要使用的技术如下:
spring做容器,管理了三层(dao,service,actioin)的对象
struts2实现与页面交互(MVC),自己做了一个异常拦截器,能拦截Action层抛出的异常
hibernate与数据库交互
BoneCp数据库连接池,据说比其它数据库连接池快20倍,仅仅是据说
MySql数据库
项目用eclipse
- treetable bug记录
braveCS
table
// 插入子节点删除再插入时不能正常显示。修改:
//不知改后有没有错,先做个备忘
Tree.prototype.removeNode = function(node) {
// Recursively remove all descendants of +node+
this.unloadBranch(node);
// Remove
- 编程之美-电话号码对应英语单词
bylijinnan
java算法编程之美
import java.util.Arrays;
public class NumberToWord {
/**
* 编程之美 电话号码对应英语单词
* 题目:
* 手机上的拨号盘,每个数字都对应一些字母,比如2对应ABC,3对应DEF.........,8对应TUV,9对应WXYZ,
* 要求对一段数字,输出其代表的所有可能的字母组合
- jquery ajax读书笔记
chengxuyuancsdn
jQuery ajax
1、jsp页面
<%@ page language="java" import="java.util.*" pageEncoding="GBK"%>
<%
String path = request.getContextPath();
String basePath = request.getScheme()
- JWFD工作流拓扑结构解析伪码描述算法
comsci
数据结构算法工作活动J#
对工作流拓扑结构解析感兴趣的朋友可以下载附件,或者下载JWFD的全部代码进行分析
/* 流程图拓扑结构解析伪码描述算法
public java.util.ArrayList DFS(String graphid, String stepid, int j)
- oracle I/O 从属进程
daizj
oracle
I/O 从属进程
I/O从属进程用于为不支持异步I/O的系统或设备模拟异步I/O.例如,磁带设备(相当慢)就不支持异步I/O.通过使用I/O 从属进程,可以让磁带机模仿通常只为磁盘驱动器提供的功能。就好像支持真正的异步I/O 一样,写设备的进程(调用者)会收集大量数据,并交由写入器写出。数据成功地写出时,写入器(此时写入器是I/O 从属进程,而不是操作系统)会通知原来的调用者,调用者则会
- 高级排序:希尔排序
dieslrae
希尔排序
public void shellSort(int[] array){
int limit = 1;
int temp;
int index;
while(limit <= array.length/3){
limit = limit * 3 + 1;
- 初二下学期难记忆单词
dcj3sjt126com
englishword
kitchen 厨房
cupboard 厨柜
salt 盐
sugar 糖
oil 油
fork 叉;餐叉
spoon 匙;调羹
chopsticks 筷子
cabbage 卷心菜;洋白菜
soup 汤
Italian 意大利的
Indian 印度的
workplace 工作场所
even 甚至;更
Italy 意大利
laugh 笑
m
- Go语言使用MySQL数据库进行增删改查
dcj3sjt126com
mysql
目前Internet上流行的网站构架方式是LAMP,其中的M即MySQL, 作为数据库,MySQL以免费、开源、使用方便为优势成为了很多Web开发的后端数据库存储引擎。MySQL驱动Go中支持MySQL的驱动目前比较多,有如下几种,有些是支持database/sql标准,而有些是采用了自己的实现接口,常用的有如下几种:
http://code.google.c...o-mysql-dri
- git命令
shuizhaosi888
git
---------------设置全局用户名:
git config --global user.name "HanShuliang" //设置用户名
git config --global user.email "
[email protected]" //设置邮箱
---------------查看环境配置
git config --li
- qemu-kvm 网络 nat模式 (四)
haoningabc
kvmqemu
qemu-ifup-NAT
#!/bin/bash
BRIDGE=virbr0
NETWORK=192.168.122.0
GATEWAY=192.168.122.1
NETMASK=255.255.255.0
DHCPRANGE=192.168.122.2,192.168.122.254
TFTPROOT=
BOOTP=
function check_bridge()
- 不要让未来的你,讨厌现在的自己
jingjing0907
生活 奋斗 工作 梦想
故事one
23岁,他大学毕业,放弃了父母安排的稳定工作,独闯京城,在家小公司混个小职位,工作还算顺手,月薪三千,混了混,混走了一年的光阴。 24岁,有了女朋友,从二环12人的集体宿舍搬到香山民居,一间平房,二人世界,爱爱爱。偶然约三朋四友,打扑克搓麻将,日子快乐似神仙; 25岁,出了几次差,调了两次岗,薪水涨了不过百,生猛狂飙的物价让现实血淋淋,无力为心爱银儿购件大牌
- 枚举类型详解
一路欢笑一路走
enum枚举详解enumsetenumMap
枚举类型详解
一.Enum详解
1.1枚举类型的介绍
JDK1.5加入了一个全新的类型的”类”—枚举类型,为此JDK1.5引入了一个新的关键字enum,我们可以这样定义一个枚举类型。
Demo:一个最简单的枚举类
public enum ColorType {
RED
- 第11章 动画效果(上)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Eclipse中jsp、js文件编辑时,卡死现象解决汇总
ljf_home
eclipsejsp卡死js卡死
使用Eclipse编辑jsp、js文件时,经常出现卡死现象,在网上百度了N次,经过N次优化调整后,卡死现象逐步好转,具体那个方法起到作用,不太好讲。将所有用过的方法罗列如下:
1、取消验证
windows–>perferences–>validation
把 除了manual 下面的全部点掉,build下只留 classpath dependency Valida
- MySQL编程中的6个重要的实用技巧
tomcat_oracle
mysql
每一行命令都是用分号(;)作为结束
对于MySQL,第一件你必须牢记的是它的每一行命令都是用分号(;)作为结束的,但当一行MySQL被插入在PHP代码中时,最好把后面的分号省略掉,例如:
mysql_query("INSERT INTO tablename(first_name,last_name)VALUES('$first_name',$last_name')");
- zoj 3820 Building Fire Stations(二分+bfs)
阿尔萨斯
Build
题目链接:zoj 3820 Building Fire Stations
题目大意:给定一棵树,选取两个建立加油站,问说所有点距离加油站距离的最大值的最小值是多少,并且任意输出一种建立加油站的方式。
解题思路:二分距离判断,判断函数的复杂度是o(n),这样的复杂度应该是o(nlogn),即使常数系数偏大,但是居然跑了4.5s,也是醉了。 判断函数里面做了3次bfs,但是每次bfs节点最多