前言
上一篇文章和大家聊到了IMS在SystemServer进程native层中的原理,本文来聊聊App进程是怎么监听IMS分发出来的输入信号的.
正文
还记得我写过WMS系列文章WMS在Activity启动中的职责 添加窗体(三)中,提到了App第一次渲染的时候会通过ViewRootImpl的addWindow方法,在WMS中为当前的Activity中的PhoneWindow添加一个对应的WindowState进行管理。
让我们先看看ViewRootImpl中做了什么。
如果遇到什么问题,欢迎来到本文https://www.jianshu.com/p/e26bb5fae995下讨论
ViewRootImpl setView
文件:/frameworks/base/core/java/android/view/ViewRootImpl.java
public void setView(View view, WindowManager.LayoutParams attrs, View panelParentView) {
synchronized (this) {
if (mView == null) {
mView = view;
....
requestLayout();
if ((mWindowAttributes.inputFeatures
& WindowManager.LayoutParams.INPUT_FEATURE_NO_INPUT_CHANNEL) == 0) {
//核心事件一
mInputChannel = new InputChannel();
}
mForceDecorViewVisibility = (mWindowAttributes.privateFlags
& PRIVATE_FLAG_FORCE_DECOR_VIEW_VISIBILITY) != 0;
try {
//核心事件二
res = mWindowSession.addToDisplay(mWindow, mSeq, mWindowAttributes,
getHostVisibility(), mDisplay.getDisplayId(), mWinFrame,
mAttachInfo.mContentInsets, mAttachInfo.mStableInsets,
mAttachInfo.mOutsets, mAttachInfo.mDisplayCutout, mInputChannel);
} catch (RemoteException e) {
...
} finally {
...
}
...
//核心事件三
if (mInputChannel != null) {
if (mInputQueueCallback != null) {
mInputQueue = new InputQueue();
mInputQueueCallback.onInputQueueCreated(mInputQueue);
}
mInputEventReceiver = new WindowInputEventReceiver(mInputChannel,
Looper.myLooper());
}
...
// Set up the input pipeline.
CharSequence counterSuffix = attrs.getTitle();
mSyntheticInputStage = new SyntheticInputStage();
InputStage viewPostImeStage = new ViewPostImeInputStage(mSyntheticInputStage);
InputStage nativePostImeStage = new NativePostImeInputStage(viewPostImeStage,
"aq:native-post-ime:" + counterSuffix);
InputStage earlyPostImeStage = new EarlyPostImeInputStage(nativePostImeStage);
InputStage imeStage = new ImeInputStage(earlyPostImeStage,
"aq:ime:" + counterSuffix);
InputStage viewPreImeStage = new ViewPreImeInputStage(imeStage);
InputStage nativePreImeStage = new NativePreImeInputStage(viewPreImeStage,
"aq:native-pre-ime:" + counterSuffix);
mFirstInputStage = nativePreImeStage;
mFirstPostImeInputStage = earlyPostImeStage;
}
}
}
在这个过程中,我们可以把它视作三大部分的逻辑
1.没有为当前的ViewRootImpl初始化InputChannel,则会先创建一个InputChannel。
2.接着把InputChannel对象通过Session的addToDisplay,也就是addWindow发送到WMS中进行处理。详细的逻辑请看WMS在Activity启动中的职责 添加窗体(三)。
3.最后为ViewRootImpl构建接受从InputChannel发送回来的输入事件环境。
核心就是第二和第三点。先来看看第二点,Session的addToDisplay最后是调用到了WMS的addWindow中。
WMS addWindow
文件:/frameworks/base/services/core/java/com/android/server/wm/WindowManagerService.java
public int addWindow(Session session, IWindow client, int seq,
LayoutParams attrs, int viewVisibility, int displayId, Rect outFrame,
Rect outContentInsets, Rect outStableInsets, Rect outOutsets,
DisplayCutout.ParcelableWrapper outDisplayCutout, InputChannel outInputChannel) {
...
synchronized(mWindowMap) {
...
final WindowState win = new WindowState(this, session, client, token, parentWindow,
appOp[0], seq, attrs, viewVisibility, session.mUid,
session.mCanAddInternalSystemWindow);
...
final boolean openInputChannels = (outInputChannel != null
&& (attrs.inputFeatures & INPUT_FEATURE_NO_INPUT_CHANNEL) == 0);
if (openInputChannels) {
win.openInputChannel(outInputChannel);
}
...
mInputMonitor.setUpdateInputWindowsNeededLw();
boolean focusChanged = false;
if (win.canReceiveKeys()) {
focusChanged = updateFocusedWindowLocked(UPDATE_FOCUS_WILL_ASSIGN_LAYERS,
false /*updateInputWindows*/);
if (focusChanged) {
imMayMove = false;
}
}
if (focusChanged) {
mInputMonitor.setInputFocusLw(mCurrentFocus, false /*updateInputWindows*/);
}
mInputMonitor.updateInputWindowsLw(false /*force*/);
}
...
return res;
}
我们把InputChannel相关的逻辑抽离出来:
1.首先如果当前的Window对应IWindow没有对应在WMS的mWindowMap,则会创建一个全新的WindowState对应上。并且调用WindowState的openInputChannel初始化从ViewRootImpl传过来的InputChannel
2.使用InputMonitor更新当前的焦点窗口。
我们来看看WindowState的openInputChannel方法。
WindowState
文件:/frameworks/base/services/core/java/com/android/server/wm/WindowState.java
WindowState(WindowManagerService service, Session s, IWindow c, WindowToken token,
WindowState parentWindow, int appOp, int seq, WindowManager.LayoutParams a,
int viewVisibility, int ownerId, boolean ownerCanAddInternalSystemWindow,
PowerManagerWrapper powerManagerWrapper) {
super(service);
....
mInputWindowHandle = new InputWindowHandle(
mAppToken != null ? mAppToken.mInputApplicationHandle : null, this, c,
getDisplayId());
}
能看到实际上这个过程诞生了一个很重要的对象InputWindowHandle,输入窗口的句柄。这个句柄最核心的对象就是通过WindowToken获取AppToken的InputApplicationHandle。
WindowState openInputChannel
void openInputChannel(InputChannel outInputChannel) {
String name = getName();
InputChannel[] inputChannels = InputChannel.openInputChannelPair(name);
mInputChannel = inputChannels[0];
mClientChannel = inputChannels[1];
mInputWindowHandle.inputChannel = inputChannels[0];
if (outInputChannel != null) {
mClientChannel.transferTo(outInputChannel);
mClientChannel.dispose();
mClientChannel = null;
} else {
mDeadWindowEventReceiver = new DeadWindowEventReceiver(mClientChannel);
}
mService.mInputManager.registerInputChannel(mInputChannel, mInputWindowHandle);
}
能看到这个过程,实际上和上一篇文章十分相似的monitorInput一节中的内容十分相似。
依次执行了如下的逻辑:
- 1.openInputChannelPair 为Java层的InputChannel在native创建一对InputChannel。
- 2.mInputWindowHandle 持有InputChannel对的0号对应的InputChannel
- 3.把1号位置中的NativeInputChannel赋值给ViewRootImpl传递过来的InputChannel。并关闭InputChannel对的1号位置对应的InputChannel。
- 4.把0号位置的InputChannel注册到IMS底层中,监听输入时间的到来。
这样通过socketpair创建的一对socket对象,注册了一个新的发送端到IMS的native层中,就能被App端的InputChannel监听到。
从这里就可以知道,0号位置的InputChannel对应的socket就是服务端(发送端)。关于如何创建InputChannel,以及如何注册到IMS。这里就不多赘述,请阅读IMS与事件分发(上)。
ViewRootImpl 构建输入事件的监听环境
if (mInputChannel != null) {
...
mInputEventReceiver = new WindowInputEventReceiver(mInputChannel,
Looper.myLooper());
}
...
// Set up the input pipeline.
CharSequence counterSuffix = attrs.getTitle();
mSyntheticInputStage = new SyntheticInputStage();
InputStage viewPostImeStage = new ViewPostImeInputStage(mSyntheticInputStage);
InputStage nativePostImeStage = new NativePostImeInputStage(viewPostImeStage,
"aq:native-post-ime:" + counterSuffix);
InputStage earlyPostImeStage = new EarlyPostImeInputStage(nativePostImeStage);
InputStage imeStage = new ImeInputStage(earlyPostImeStage,
"aq:ime:" + counterSuffix);
InputStage viewPreImeStage = new ViewPreImeInputStage(imeStage);
InputStage nativePreImeStage = new NativePreImeInputStage(viewPreImeStage,
"aq:native-pre-ime:" + counterSuffix);
mFirstInputStage = nativePreImeStage;
mFirstPostImeInputStage = earlyPostImeStage;
- 1.在ViewRootImpl中构建一个WindowInputEventReceiver对象,这个对象将会监听从IMS传送过来的输入事件。
- 2.构建InputStage对象,该系列对象实际上就是当IMS从native传递上来后,进行处理的输入事件"舞台".
WindowInputEventReceiver ViewRootImpl对输入事件的监听原理
final class WindowInputEventReceiver extends InputEventReceiver {
public WindowInputEventReceiver(InputChannel inputChannel, Looper looper) {
super(inputChannel, looper);
}
@Override
public void onInputEvent(InputEvent event, int displayId) {
enqueueInputEvent(event, this, 0, true);
}
@Override
public void onBatchedInputEventPending() {
if (mUnbufferedInputDispatch) {
super.onBatchedInputEventPending();
} else {
scheduleConsumeBatchedInput();
}
}
@Override
public void dispose() {
unscheduleConsumeBatchedInput();
super.dispose();
}
}
这个对象很简单,他继承于InputEventReceiver。InputEventReceiver对象就是专门监听IMS输入事件的基类。每当IMS发送信号来了就会调用子类的onInputEvent方法,onBatchedInputEventPending。
我们先来看看InputEventReceiver的初始化。
InputEventReceiver
public InputEventReceiver(InputChannel inputChannel, Looper looper) {
...
mInputChannel = inputChannel;
mMessageQueue = looper.getQueue();
mReceiverPtr = nativeInit(new WeakReference(this),
inputChannel, mMessageQueue);
mCloseGuard.open("dispose");
}
核心实际上就是调用native方法在native层初始化了IMS事件监听器。
InputEventReceiver native层初始化
文件:/frameworks/base/core/jni/android_view_InputEventReceiver.cpp
static jlong nativeInit(JNIEnv* env, jclass clazz, jobject receiverWeak,
jobject inputChannelObj, jobject messageQueueObj) {
sp inputChannel = android_view_InputChannel_getInputChannel(env,
inputChannelObj);
...
sp messageQueue = android_os_MessageQueue_getMessageQueue(env, messageQueueObj);
...
sp receiver = new NativeInputEventReceiver(env,
receiverWeak, inputChannel, messageQueue);
status_t status = receiver->initialize();
...
receiver->incStrong(gInputEventReceiverClassInfo.clazz); // retain a reference for the object
return reinterpret_cast(receiver.get());
}
这里只是简单的生成一个NativeInputEventReceiver对象,并调用了NativeInputEventReceiver的initialize方法。为全局的clazz对象新增一个强引用计数。
NativeInputEventReceiver
class NativeInputEventReceiver : public LooperCallback {
public:
NativeInputEventReceiver(JNIEnv* env,
jobject receiverWeak, const sp& inputChannel,
const sp& messageQueue);
status_t initialize();
void dispose();
status_t finishInputEvent(uint32_t seq, bool handled);
status_t consumeEvents(JNIEnv* env, bool consumeBatches, nsecs_t frameTime,
bool* outConsumedBatch);
protected:
virtual ~NativeInputEventReceiver();
private:
struct Finish {
uint32_t seq;
bool handled;
};
jobject mReceiverWeakGlobal;
InputConsumer mInputConsumer;
sp mMessageQueue;
PreallocatedInputEventFactory mInputEventFactory;
bool mBatchedInputEventPending;
int mFdEvents;
Vector mFinishQueue;
void setFdEvents(int events);
const std::string getInputChannelName() {
return mInputConsumer.getChannel()->getName();
}
virtual int handleEvent(int receiveFd, int events, void* data);
};
从NativeInputEventReceiver的申明能看到实际上他是实现了LooperCallback。LooperCallback这个对象,可以阅读Handler与相关系统调用的剖析(上),里面有讲解到LooperCallback实际上就是native层Looper回调后的监听对象,回调的方法就是虚函数handleEvent。
在NativeInputEventReceiver有一个十分重要的对象InputConsumer。当IMS回调了输入事件后,NativeInputEventReceiver使用InputConsumer在native层中进行处理。
构造函数没什么好看的,直接看看initialize初始化的方法。
NativeInputEventReceiver initialize
status_t NativeInputEventReceiver::initialize() {
setFdEvents(ALOOPER_EVENT_INPUT);
return OK;
}
void NativeInputEventReceiver::setFdEvents(int events) {
if (mFdEvents != events) {
mFdEvents = events;
int fd = mInputConsumer.getChannel()->getFd();
if (events) {
mMessageQueue->getLooper()->addFd(fd, 0, events, this, NULL);
} else {
mMessageQueue->getLooper()->removeFd(fd);
}
}
}
能看到这里面实际上很简单,就是获取InputConsumer中的InputChannel中的fd,这里fd就是上面初始化好的接收端的InputChannel。因此就是获取主线程的Looper并使用Looper监听客户端的InputChannel。
一旦IMS有信号发送过来则立即回调LooperCallback中的handleEvent。
当输入信号从native层传送过来了,则会开始回调handleEvent方法。关于IMS如果读取输入事件,处理后传输过来,可以阅读我写的IMS与事件分发(上)。
handleEvent App进程处理输入事件
int NativeInputEventReceiver::handleEvent(int receiveFd, int events, void* data) {
if (events & (ALOOPER_EVENT_ERROR | ALOOPER_EVENT_HANGUP)) {
return 0; // remove the callback
}
if (events & ALOOPER_EVENT_INPUT) {
JNIEnv* env = AndroidRuntime::getJNIEnv();
status_t status = consumeEvents(env, false /*consumeBatches*/, -1, NULL);
mMessageQueue->raiseAndClearException(env, "handleReceiveCallback");
return status == OK || status == NO_MEMORY ? 1 : 0;
}
if (events & ALOOPER_EVENT_OUTPUT) {
for (size_t i = 0; i < mFinishQueue.size(); i++) {
const Finish& finish = mFinishQueue.itemAt(i);
status_t status = mInputConsumer.sendFinishedSignal(finish.seq, finish.handled);
if (status) {
mFinishQueue.removeItemsAt(0, i);
if (status == WOULD_BLOCK) {
return 1; // keep the callback, try again later
}
...
return 0; // remove the callback
}
}
mFinishQueue.clear();
setFdEvents(ALOOPER_EVENT_INPUT);
return 1;
}
return 1;
}
大致上可以分为两种情况,分别对象Looper注册的事件类型ALOOPER_EVENT_INPUT和ALOOPER_EVENT_OUTPUT。
很多地方没解析清楚:
- ALOOPER_EVENT_INPUT 是指那些可读的文件描述符传递过来的事件
- ALOOPER_EVENT_OUTPUT 是指那些可写的文件描述符,需要传递过去的事件。
在NativeInputEventReceiver中,ALOOPER_EVENT_INPUT代表从驱动读取到的输入事件传递过来;ALOOPER_EVENT_OUTPUT代表此时需要关闭输入事件的监听,而传递过去的后返回的事件处理。
我们先来看看ALOOPER_EVENT_INPUT对应的事件处理。
if (events & ALOOPER_EVENT_INPUT) {
JNIEnv* env = AndroidRuntime::getJNIEnv();
status_t status = consumeEvents(env, false /*consumeBatches*/, -1, NULL);
mMessageQueue->raiseAndClearException(env, "handleReceiveCallback");
return status == OK || status == NO_MEMORY ? 1 : 0;
}
核心处理方法是consumeEvents。
consumeEvents
status_t NativeInputEventReceiver::consumeEvents(JNIEnv* env,
bool consumeBatches, nsecs_t frameTime, bool* outConsumedBatch) {
if (consumeBatches) {
mBatchedInputEventPending = false;
}
if (outConsumedBatch) {
*outConsumedBatch = false;
}
ScopedLocalRef receiverObj(env, NULL);
bool skipCallbacks = false;
for (;;) {
uint32_t seq;
InputEvent* inputEvent;
int32_t displayId;
status_t status = mInputConsumer.consume(&mInputEventFactory,
consumeBatches, frameTime, &seq, &inputEvent, &displayId);
if (status) {
if (status == WOULD_BLOCK) {
if (!skipCallbacks && !mBatchedInputEventPending
&& mInputConsumer.hasPendingBatch()) {
mBatchedInputEventPending = true;
env->CallVoidMethod(receiverObj.get(),
gInputEventReceiverClassInfo.dispatchBatchedInputEventPending);
}
return OK;
}
return status;
}
...
if (!skipCallbacks) {
....
jobject inputEventObj;
switch (inputEvent->getType()) {
case AINPUT_EVENT_TYPE_KEY:
inputEventObj = android_view_KeyEvent_fromNative(env,
static_cast(inputEvent));
break;
case AINPUT_EVENT_TYPE_MOTION: {
MotionEvent* motionEvent = static_cast(inputEvent);
if ((motionEvent->getAction() & AMOTION_EVENT_ACTION_MOVE) && outConsumedBatch) {
*outConsumedBatch = true;
}
inputEventObj = android_view_MotionEvent_obtainAsCopy(env, motionEvent);
break;
}
default:
inputEventObj = NULL;
}
if (inputEventObj) {
//发送核心
env->CallVoidMethod(receiverObj.get(),
gInputEventReceiverClassInfo.dispatchInputEvent, seq, inputEventObj,
displayId);
if (env->ExceptionCheck()) {
skipCallbacks = true;
}
env->DeleteLocalRef(inputEventObj);
} else {
skipCallbacks = true;
}
}
if (skipCallbacks) {
mInputConsumer.sendFinishedSignal(seq, false);
}
}
}
1.通过InputConsumer的consume方法消费它持有的InputChannel的输入事件。
3.如果是Monition类型事件且是多点触控需要批量处理的,则会通过CallVoidMethod反射调用InputEventReceiver的dispatchBatchedInputEventPending方法。
2.根据Key 还是Monition生成对应的Java对象,通过CallVoidMethod反射调用Java方法,InputEventReceiver的dispatchInputEvent方法。
InputConsumer consume
文件:/frameworks/native/libs/input/InputTransport.cpp
status_t InputConsumer::consume(InputEventFactoryInterface* factory,
bool consumeBatches, nsecs_t frameTime, uint32_t* outSeq, InputEvent** outEvent,
int32_t* displayId) {
*outSeq = 0;
*outEvent = NULL;
*displayId = -1; // Invalid display.
while (!*outEvent) {
if (mMsgDeferred) {
mMsgDeferred = false;
} else {
status_t result = mChannel->receiveMessage(&mMsg);
if (result) {
if (consumeBatches || result != WOULD_BLOCK) {
result = consumeBatch(factory, frameTime, outSeq, outEvent, displayId);
if (*outEvent) {
break;
}
}
return result;
}
}
switch (mMsg.header.type) {
case InputMessage::TYPE_KEY: {
KeyEvent* keyEvent = factory->createKeyEvent();
if (!keyEvent) return NO_MEMORY;
initializeKeyEvent(keyEvent, &mMsg);
*outSeq = mMsg.body.key.seq;
*outEvent = keyEvent;
break;
}
case InputMessage::TYPE_MOTION: {
ssize_t batchIndex = findBatch(mMsg.body.motion.deviceId, mMsg.body.motion.source);
if (batchIndex >= 0) {
Batch& batch = mBatches.editItemAt(batchIndex);
if (canAddSample(batch, &mMsg)) {
batch.samples.push(mMsg);
break;
} else {
mMsgDeferred = true;
status_t result = consumeSamples(factory,
batch, batch.samples.size(), outSeq, outEvent, displayId);
mBatches.removeAt(batchIndex);
if (result) {
return result;
}
break;
}
}
// Start a new batch if needed.
if (mMsg.body.motion.action == AMOTION_EVENT_ACTION_MOVE
|| mMsg.body.motion.action == AMOTION_EVENT_ACTION_HOVER_MOVE) {
mBatches.push();
Batch& batch = mBatches.editTop();
batch.samples.push(mMsg);
break;
}
MotionEvent* motionEvent = factory->createMotionEvent();
if (! motionEvent) return NO_MEMORY;
updateTouchState(mMsg);
initializeMotionEvent(motionEvent, &mMsg);
*outSeq = mMsg.body.motion.seq;
*outEvent = motionEvent;
*displayId = mMsg.body.motion.displayId;
break;
}
default:
return UNKNOWN_ERROR;
}
}
return OK;
}
先从InputChannel的recv系统调用获取socket里面的InputMessage数据。
虽然此时consumeBatches为false,但是result正常情况下不会是WOULD_BLOCK,会先执行consumeBatch批量处理触点事件。
在这个方法中分为两个类型处理:
1.InputMessage::TYPE_KEY 是key按键类型,则通过上面传下来的factory构建一个KeyEvent对象,初始化后并且返回。
2.InputMessage::TYPE_MOTION 是触点类型。由于触点类型可以是多点触碰,对于移动的触点,需要进行触点的跟踪,因此这里引入了Batch概念,按照批次处理触点事件。
struct Batch {
Vector samples;
};
能看到实际上Batch就是一个InputMessage的集合。每当检测到AMOTION_EVENT_ACTION_MOVE或者AMOTION_EVENT_ACTION_HOVER_MOVE的触点类型,则会添加到mBatches集合中,等待下一次的更新。
当下一次触点触发了回调,在这个outEvent链表不为空的循环前提下,canAddSample判断到当前PointerCount和之前的一致,会把InputMessage不断的添加到Batch的samples集合中。如果出现了不一致则需要consumeSamples进行更新Batch中记录的InputMessage。
这样就能跟踪到了这一批次的触点的轨迹,以及新增的触点。
如果只有单个触点则生成MotionEvent对象赋值给指针返回。
我们来看看InputEventReceiver是通过InputConsumer消费后是怎么触发接下来的逻辑。我们只看单点触发的逻辑。
InputReceiver 分发输入事件
env->CallVoidMethod(receiverObj.get(),
gInputEventReceiverClassInfo.dispatchInputEvent, seq, inputEventObj,
displayId);
实际上对应的是:
private void dispatchInputEvent(int seq, InputEvent event, int displayId) {
mSeqMap.put(event.getSequenceNumber(), seq);
onInputEvent(event, displayId);
}
而onInputEvent这个方法实际上就是对应WindowInputEventReceiver。
final class WindowInputEventReceiver extends InputEventReceiver {
public WindowInputEventReceiver(InputChannel inputChannel, Looper looper) {
super(inputChannel, looper);
}
@Override
public void onInputEvent(InputEvent event, int displayId) {
enqueueInputEvent(event, this, 0, true);
}
可以看到最后回调到了enqueueInputEvent方法中。
enqueueInputEvent
void enqueueInputEvent(InputEvent event) {
enqueueInputEvent(event, null, 0, false);
}
void enqueueInputEvent(InputEvent event,
InputEventReceiver receiver, int flags, boolean processImmediately) {
adjustInputEventForCompatibility(event);
QueuedInputEvent q = obtainQueuedInputEvent(event, receiver, flags);
QueuedInputEvent last = mPendingInputEventTail;
if (last == null) {
mPendingInputEventHead = q;
mPendingInputEventTail = q;
} else {
last.mNext = q;
mPendingInputEventTail = q;
}
mPendingInputEventCount += 1;
if (processImmediately) {
doProcessInputEvents();
} else {
scheduleProcessInputEvents();
}
}
能看到整个很久爱都难,就是生成一个obtainQueuedInputEvent对象,添加到mPendingInputEventTail链表的末端,调用scheduleProcessInputEvents方法分发。如果是需要立即响应则调用doProcessInputEvents方法。
scheduleProcessInputEvents
private void scheduleProcessInputEvents() {
if (!mProcessInputEventsScheduled) {
mProcessInputEventsScheduled = true;
Message msg = mHandler.obtainMessage(MSG_PROCESS_INPUT_EVENTS);
msg.setAsynchronous(true);
mHandler.sendMessage(msg);
}
}
能看到此时发送了一个MSG_PROCESS_INPUT_EVENTS一个Asynchronous异步消息。其实就是一个能在同步屏障内优先执行的消息。
case MSG_PROCESS_INPUT_EVENTS:
mProcessInputEventsScheduled = false;
doProcessInputEvents();
break;
核心还是调用了doProcessInputEvents。
doProcessInputEvents
void doProcessInputEvents() {
while (mPendingInputEventHead != null) {
QueuedInputEvent q = mPendingInputEventHead;
mPendingInputEventHead = q.mNext;
if (mPendingInputEventHead == null) {
mPendingInputEventTail = null;
}
q.mNext = null;
mPendingInputEventCount -= 1;
long eventTime = q.mEvent.getEventTimeNano();
long oldestEventTime = eventTime;
if (q.mEvent instanceof MotionEvent) {
MotionEvent me = (MotionEvent)q.mEvent;
if (me.getHistorySize() > 0) {
oldestEventTime = me.getHistoricalEventTimeNano(0);
}
}
mChoreographer.mFrameInfo.updateInputEventTime(eventTime, oldestEventTime);
deliverInputEvent(q);
}
if (mProcessInputEventsScheduled) {
mProcessInputEventsScheduled = false;
mHandler.removeMessages(MSG_PROCESS_INPUT_EVENTS);
}
}
Choreographer.mFrameInfo 更新了分发时间后,整个过程最核心的逻辑就是循环遍历mPendingInputEventHead调用deliverInputEvent进行事件的分发QueuedInputEvent。
deliverInputEvent
private void deliverInputEvent(QueuedInputEvent q) {
if (mInputEventConsistencyVerifier != null) {
mInputEventConsistencyVerifier.onInputEvent(q.mEvent, 0);
}
InputStage stage;
if (q.shouldSendToSynthesizer()) {
stage = mSyntheticInputStage;
} else {
stage = q.shouldSkipIme() ? mFirstPostImeInputStage : mFirstInputStage;
}
if (q.mEvent instanceof KeyEvent) {
mUnhandledKeyManager.preDispatch((KeyEvent) q.mEvent);
}
if (stage != null) {
handleWindowFocusChanged();
stage.deliver(q);
} else {
finishInputEvent(q);
}
}
逻辑分为如下几个步骤:
1.QueuedInputEvent的shouldSendToSynthesizer判断默认是false,shouldSkipIme也是false。此时InputStage就是mFirstInputStage。这个对象就是NativePreImeInputStage。
2.如果获取到的stage不为空,则调用NativePreImeInputStage的deliver方法分发事件。
ViewRootImpl 构建输入事件的接收环境
mSyntheticInputStage = new SyntheticInputStage();
InputStage viewPostImeStage = new ViewPostImeInputStage(mSyntheticInputStage);
InputStage nativePostImeStage = new NativePostImeInputStage(viewPostImeStage,
"aq:native-post-ime:" + counterSuffix);
InputStage earlyPostImeStage = new EarlyPostImeInputStage(nativePostImeStage);
InputStage imeStage = new ImeInputStage(earlyPostImeStage,
"aq:ime:" + counterSuffix);
InputStage viewPreImeStage = new ViewPreImeInputStage(imeStage);
InputStage nativePreImeStage = new NativePreImeInputStage(viewPreImeStage,
"aq:native-pre-ime:" + counterSuffix);
mFirstInputStage = nativePreImeStage;
mFirstPostImeInputStage = earlyPostImeStage;
能看到这里面构建很多InputStage对象。这些对象都是通过责任链设计全部嵌套到一起。
我们简单的看看它的UML图,来区分他们的直接的关系:
InputStage 的分发入口
先来看看InputStage的deliver
public final void deliver(QueuedInputEvent q) {
if ((q.mFlags & QueuedInputEvent.FLAG_FINISHED) != 0) {
forward(q);
} else if (shouldDropInputEvent(q)) {
finish(q, false);
} else {
apply(q, onProcess(q));
}
}
protected void finish(QueuedInputEvent q, boolean handled) {
q.mFlags |= QueuedInputEvent.FLAG_FINISHED;
if (handled) {
q.mFlags |= QueuedInputEvent.FLAG_FINISHED_HANDLED;
}
forward(q);
}
protected void forward(QueuedInputEvent q) {
onDeliverToNext(q);
}
protected int onProcess(QueuedInputEvent q) {
return FORWARD;
}
protected void onDeliverToNext(QueuedInputEvent q) {
if (mNext != null) {
mNext.deliver(q);
} else {
finishInputEvent(q);
}
}
protected void apply(QueuedInputEvent q, int result) {
if (result == FORWARD) {
forward(q);
} else if (result == FINISH_HANDLED) {
finish(q, true);
} else if (result == FINISH_NOT_HANDLED) {
finish(q, false);
} else {
throw new IllegalArgumentException("Invalid result: " + result);
}
}
deliver的入口会判断当前QueuedInputEvent的状态。
如果判断QueuedInputEvent打开FLAG_FINISHED标志位,换句话说就是不是通过finish方法进来的,就会执行forward的方法。
如果判断到当前Window失去焦点,或者还没有进行刷新ui,QueuedInputEvent则执行finish
剩下的情况执行apply的默认方法,而执行的方法由每一个InputStage的子类复写onProcess标志位决定的。
我们来看看对整个链路从NativePreImeInputStage开始逆推回去,关键还是看apply中的方法。
在所有的InputStage中分为两类,一类是直接继承InputStage,一类是继承AsyncInputStage,我们优先看看AsyncInputStage。
AsyncInputStage
abstract class AsyncInputStage extends InputStage {
private final String mTraceCounter;
private QueuedInputEvent mQueueHead;
private QueuedInputEvent mQueueTail;
private int mQueueLength;
protected static final int DEFER = 3;
....
protected void defer(QueuedInputEvent q) {
q.mFlags |= QueuedInputEvent.FLAG_DEFERRED;
enqueue(q);
}
@Override
protected void forward(QueuedInputEvent q) {
q.mFlags &= ~QueuedInputEvent.FLAG_DEFERRED;
QueuedInputEvent curr = mQueueHead;
if (curr == null) {
super.forward(q);
return;
}
final int deviceId = q.mEvent.getDeviceId();
QueuedInputEvent prev = null;
boolean blocked = false;
while (curr != null && curr != q) {
if (!blocked && deviceId == curr.mEvent.getDeviceId()) {
blocked = true;
}
prev = curr;
curr = curr.mNext;
}
if (blocked) {
if (curr == null) {
enqueue(q);
}
return;
}
if (curr != null) {
curr = curr.mNext;
dequeue(q, prev);
}
super.forward(q);
while (curr != null) {
if (deviceId == curr.mEvent.getDeviceId()) {
if ((curr.mFlags & QueuedInputEvent.FLAG_DEFERRED) != 0) {
break;
}
QueuedInputEvent next = curr.mNext;
dequeue(curr, prev);
super.forward(curr);
curr = next;
} else {
prev = curr;
curr = curr.mNext;
}
}
}
private void enqueue(QueuedInputEvent q) {
if (mQueueTail == null) {
mQueueHead = q;
mQueueTail = q;
} else {
mQueueTail.mNext = q;
mQueueTail = q;
}
mQueueLength += 1;
}
private void dequeue(QueuedInputEvent q, QueuedInputEvent prev) {
if (prev == null) {
mQueueHead = q.mNext;
} else {
prev.mNext = q.mNext;
}
if (mQueueTail == q) {
mQueueTail = prev;
}
q.mNext = null;
mQueueLength -= 1;
}
}
在AsyncInputStage存储了一个QueuedInputEvent链表。当判断到事件打开了FLAG_FINISHED,其在核心方法forward做了如下的事情:
当链表中没有任何待分发的事件,直接调用父类的forward方法,也就调用onDeliverNext方法,在onDeliverNext如果当前InputStage不存在下一个InputStage则会调用finishInputEvent。
-
当存在待分发的事件链表,则会尝试判断是否已经存在相同的输入设备(也就是相同的输入类型)相同事件对象。
- 如果找到了相同的输入设备id则block为true,找到相同事件对象或者末尾则跳出循环。
- 如果遍历刚好在末尾,说明没有相同的事件则通过enqueue添加到事件链表末尾。
- 如果curr不为空,说明此时有相同的事件则dequeue 出队当前的输入事件,调用父类forward。
- 如果经过forward的处理,事件队列还存在输入事件关闭FLAG_DEFERRED标志位的QueuedInputEvent,则继续遍历链表进行消费。
- 如果找到了相同的输入设备id则block为true,找到相同事件对象或者末尾则跳出循环。
finishInputEvent
private void finishInputEvent(QueuedInputEvent q) {
if (q.mReceiver != null) {
boolean handled = (q.mFlags & QueuedInputEvent.FLAG_FINISHED_HANDLED) != 0;
q.mReceiver.finishInputEvent(q.mEvent, handled);
} else {
...
}
recycleQueuedInputEvent(q);
}
能看到这个过程中很简单,如果QueuedInputEvent持有了InputEventReceiver对象则会InputEventReceiver.finishInputEvent进行native方法的调用,告诉native层销毁了当前的事件。
public final void finishInputEvent(InputEvent event, boolean handled) {
if (event == null) {
throw new IllegalArgumentException("event must not be null");
}
if (mReceiverPtr == 0) {
....
} else {
int index = mSeqMap.indexOfKey(event.getSequenceNumber());
if (index < 0) {
...
} else {
int seq = mSeqMap.valueAt(index);
mSeqMap.removeAt(index);
nativeFinishInputEvent(mReceiverPtr, seq, handled);
}
}
event.recycleIfNeededAfterDispatch();
}
NativeInputEventReceiver finishInputEvent
status_t NativeInputEventReceiver::finishInputEvent(uint32_t seq, bool handled) {
status_t status = mInputConsumer.sendFinishedSignal(seq, handled);
if (status) {
if (status == WOULD_BLOCK) {
Finish finish;
finish.seq = seq;
finish.handled = handled;
mFinishQueue.add(finish);
if (mFinishQueue.size() == 1) {
setFdEvents(ALOOPER_EVENT_INPUT | ALOOPER_EVENT_OUTPUT);
}
return OK;
}
}
return status;
}
能看到很简单就是调用InputConsumer的sendFinishedSignal方法发送该输入事件的序列号处理对应在InputDispatcher中事件。
InputStage分类
当InputStage需要开始分发事件,就会调用apply方法,而apply中就会调用onProcess方法。每一个子类InputStage的onProcess其实就是意味着这个InputStage做了什么事情。
接下来我们就按照责任链的嵌套顺序来看看InputStage,每一个输入阶段都做了什么。
NativePreImeInputStage
final class NativePreImeInputStage extends AsyncInputStage
implements InputQueue.FinishedInputEventCallback {
public NativePreImeInputStage(InputStage next, String traceCounter) {
super(next, traceCounter);
}
@Override
protected int onProcess(QueuedInputEvent q) {
if (mInputQueue != null && q.mEvent instanceof KeyEvent) {
mInputQueue.sendInputEvent(q.mEvent, q, true, this);
return DEFER;
}
return FORWARD;
}
...
}
NativePreImeInputStage实际上就是就是处理InputQueue。
ViewPreImeInputStage
final class ViewPreImeInputStage extends InputStage {
public ViewPreImeInputStage(InputStage next) {
super(next);
}
@Override
protected int onProcess(QueuedInputEvent q) {
if (q.mEvent instanceof KeyEvent) {
return processKeyEvent(q);
}
return FORWARD;
}
private int processKeyEvent(QueuedInputEvent q) {
final KeyEvent event = (KeyEvent)q.mEvent;
if (mView.dispatchKeyEventPreIme(event)) {
return FINISH_HANDLED;
}
return FORWARD;
}
}
ViewPreImeInputStage 这个InputStage是预处理KeyEvent,把键盘等事件通过DecorView的dispatchKeyEventPreIme进行预处理分发。
ImeInputStage
final class ImeInputStage extends AsyncInputStage
implements InputMethodManager.FinishedInputEventCallback {
public ImeInputStage(InputStage next, String traceCounter) {
super(next, traceCounter);
}
@Override
protected int onProcess(QueuedInputEvent q) {
if (mLastWasImTarget && !isInLocalFocusMode()) {
InputMethodManager imm = InputMethodManager.peekInstance();
if (imm != null) {
final InputEvent event = q.mEvent;
int result = imm.dispatchInputEvent(event, q, this, mHandler);
if (result == InputMethodManager.DISPATCH_HANDLED) {
return FINISH_HANDLED;
} else if (result == InputMethodManager.DISPATCH_NOT_HANDLED) {
return FORWARD;
} else {
return DEFER; // callback will be invoked later
}
}
}
return FORWARD;
}
...
}
ImeInputStage专门处理软键盘的事件分发。
EarlyPostImeInputStage
final class EarlyPostImeInputStage extends InputStage {
public EarlyPostImeInputStage(InputStage next) {
super(next);
}
@Override
protected int onProcess(QueuedInputEvent q) {
if (q.mEvent instanceof KeyEvent) {
return processKeyEvent(q);
} else {
final int source = q.mEvent.getSource();
if ((source & InputDevice.SOURCE_CLASS_POINTER) != 0) {
return processPointerEvent(q);
}
}
return FORWARD;
}
private int processKeyEvent(QueuedInputEvent q) {
final KeyEvent event = (KeyEvent)q.mEvent;
if (mAttachInfo.mTooltipHost != null) {
mAttachInfo.mTooltipHost.handleTooltipKey(event);
}
if (checkForLeavingTouchModeAndConsume(event)) {
return FINISH_HANDLED;
}
mFallbackEventHandler.preDispatchKeyEvent(event);
return FORWARD;
}
private int processPointerEvent(QueuedInputEvent q) {
final MotionEvent event = (MotionEvent)q.mEvent;
if (mTranslator != null) {
mTranslator.translateEventInScreenToAppWindow(event);
}
final int action = event.getAction();
if (action == MotionEvent.ACTION_DOWN || action == MotionEvent.ACTION_SCROLL) {
ensureTouchMode(event.isFromSource(InputDevice.SOURCE_TOUCHSCREEN));
}
if (action == MotionEvent.ACTION_DOWN) {
// Upon motion event within app window, close autofill ui.
AutofillManager afm = getAutofillManager();
if (afm != null) {
afm.requestHideFillUi();
}
}
if (action == MotionEvent.ACTION_DOWN && mAttachInfo.mTooltipHost != null) {
mAttachInfo.mTooltipHost.hideTooltip();
}
if (mCurScrollY != 0) {
event.offsetLocation(0, mCurScrollY);
}
if (event.isTouchEvent()) {
mLastTouchPoint.x = event.getRawX();
mLastTouchPoint.y = event.getRawY();
mLastTouchSource = event.getSource();
}
return FORWARD;
}
}
该方法实际上是处理mFallbackEventHandler的Key事件。这个对象是PhoneFallbackEventHandler,里面处理了手机屏幕外按键的事件处理,如多媒体音量,通话音量等等。还处理了Touch模式以及AutofillManager。
NativePostImeInputStage
final class NativePostImeInputStage extends AsyncInputStage
implements InputQueue.FinishedInputEventCallback {
public NativePostImeInputStage(InputStage next, String traceCounter) {
super(next, traceCounter);
}
@Override
protected int onProcess(QueuedInputEvent q) {
if (mInputQueue != null) {
mInputQueue.sendInputEvent(q.mEvent, q, false, this);
return DEFER;
}
return FORWARD;
}
...
}
NativePostImeInputStage继续处理了之前还需要继续处理InputQueue中的事件。
ViewPostImeInputStage
final class ViewPostImeInputStage extends InputStage {
public ViewPostImeInputStage(InputStage next) {
super(next);
}
@Override
protected int onProcess(QueuedInputEvent q) {
if (q.mEvent instanceof KeyEvent) {
return processKeyEvent(q);
} else {
final int source = q.mEvent.getSource();
if ((source & InputDevice.SOURCE_CLASS_POINTER) != 0) {
return processPointerEvent(q);
} else if ((source & InputDevice.SOURCE_CLASS_TRACKBALL) != 0) {
return processTrackballEvent(q);
} else {
return processGenericMotionEvent(q);
}
}
}
....
}
- 判断是KeyEvent类型则processKeyEvent开始分发KeyEntry
- 如果不是KeyEvent,但是是手指输入设备,则调用processPointerEvent。最终会调用View 的dispatchPointerEvent
- 如果来自SOURCE_CLASS_TRACKBALL输入设备,则调用processTrackballEvent。最终会调用View 的dispatchTrackballEvent
- 剩下的则会通过processGenericMotionEvent分发Monition。会调用View的dispatchGenericMotionEvent方法。
SyntheticInputStage
final class SyntheticInputStage extends InputStage {
private final SyntheticTrackballHandler mTrackball = new SyntheticTrackballHandler();
private final SyntheticJoystickHandler mJoystick = new SyntheticJoystickHandler();
private final SyntheticTouchNavigationHandler mTouchNavigation =
new SyntheticTouchNavigationHandler();
private final SyntheticKeyboardHandler mKeyboard = new SyntheticKeyboardHandler();
public SyntheticInputStage() {
super(null);
}
@Override
protected int onProcess(QueuedInputEvent q) {
q.mFlags |= QueuedInputEvent.FLAG_RESYNTHESIZED;
if (q.mEvent instanceof MotionEvent) {
final MotionEvent event = (MotionEvent)q.mEvent;
final int source = event.getSource();
if ((source & InputDevice.SOURCE_CLASS_TRACKBALL) != 0) {
mTrackball.process(event);
return FINISH_HANDLED;
} else if ((source & InputDevice.SOURCE_CLASS_JOYSTICK) != 0) {
mJoystick.process(event);
return FINISH_HANDLED;
} else if ((source & InputDevice.SOURCE_TOUCH_NAVIGATION)
== InputDevice.SOURCE_TOUCH_NAVIGATION) {
mTouchNavigation.process(event);
return FINISH_HANDLED;
}
} else if ((q.mFlags & QueuedInputEvent.FLAG_UNHANDLED) != 0) {
mKeyboard.process((KeyEvent)q.mEvent);
return FINISH_HANDLED;
}
return FORWARD;
}
@Override
protected void onDeliverToNext(QueuedInputEvent q) {
if ((q.mFlags & QueuedInputEvent.FLAG_RESYNTHESIZED) == 0) {
if (q.mEvent instanceof MotionEvent) {
final MotionEvent event = (MotionEvent)q.mEvent;
final int source = event.getSource();
if ((source & InputDevice.SOURCE_CLASS_TRACKBALL) != 0) {
mTrackball.cancel();
} else if ((source & InputDevice.SOURCE_CLASS_JOYSTICK) != 0) {
mJoystick.cancel();
} else if ((source & InputDevice.SOURCE_TOUCH_NAVIGATION)
== InputDevice.SOURCE_TOUCH_NAVIGATION) {
mTouchNavigation.cancel(event);
}
}
}
super.onDeliverToNext(q);
}
...
}
在对剩下不同的设备输入事件进行通过对应的处理对象进行enqueue处理。
View触点事件的分发
在这么多的InputStage 输入处理阶段对象中,需要我们进行重点关注的是ViewPostImeInputStage。在这个阶段中对Key和Motion对象进行处理。
Key事件分发
private int processKeyEvent(QueuedInputEvent q) {
final KeyEvent event = (KeyEvent)q.mEvent;
....
// Deliver the key to the view hierarchy.
if (mView.dispatchKeyEvent(event)) {
return FINISH_HANDLED;
}
...
return FORWARD;
}
实际上此时的mView是DecorView。通过根布局的dispatchKeyEvent向整个View视图层级分发。
DecorView dispatchKeyEvent
@Override
public boolean dispatchKeyEvent(KeyEvent event) {
final int keyCode = event.getKeyCode();
final int action = event.getAction();
final boolean isDown = action == KeyEvent.ACTION_DOWN;
...
if (!mWindow.isDestroyed()) {
final Window.Callback cb = mWindow.getCallback();
final boolean handled = cb != null && mFeatureId < 0 ? cb.dispatchKeyEvent(event)
: super.dispatchKeyEvent(event);
if (handled) {
return true;
}
}
return isDown ? mWindow.onKeyDown(mFeatureId, event.getKeyCode(), event)
: mWindow.onKeyUp(mFeatureId, event.getKeyCode(), event);
}
DecorView会校验它持有的PhoneWindow是否被销毁。没有销毁则获取PhoneWindow的Window.Callback监听对象,调用它的dispatchKeyEvent方法。
如果判断dispatchKeyEvent处理的事件返回false,说明需要继续处理Key事件。因此此时发现当前的KeyEvent是ACTION_DOWN,则会调用PhoneWindow的onKeyDown方法,否则则调用onKeyUp。
我们主要来考察Key的事件分发.注意此时正在监听Window.Callback的回调是Activity。
Activity dispatchKeyEvent
public boolean dispatchKeyEvent(KeyEvent event) {
onUserInteraction();
final int keyCode = event.getKeyCode();
if (keyCode == KeyEvent.KEYCODE_MENU &&
mActionBar != null && mActionBar.onMenuKeyEvent(event)) {
return true;
}
Window win = getWindow();
if (win.superDispatchKeyEvent(event)) {
return true;
}
View decor = mDecor;
if (decor == null) decor = win.getDecorView();
return event.dispatch(this, decor != null
? decor.getKeyDispatcherState() : null, this);
}
Activity获取PhoneWindow对象,调用PhoneWindow的superDispatchKeyEvent。
PhoneWindow superDispatchKeyEvent
public boolean superDispatchKeyEvent(KeyEvent event) {
return mDecor.superDispatchKeyEvent(event);
}
DecorView superDispatchKeyEvent
public boolean superDispatchKeyEvent(KeyEvent event) {
...
if (super.dispatchKeyEvent(event)) {
return true;
}
return (getViewRootImpl() != null) && getViewRootImpl().dispatchUnhandledKeyEvent(event);
}
调用了核心的了ViewGroup的dispatchKeyEvent方法。
ViewGroup dispatchKeyEvent
@Override
public boolean dispatchKeyEvent(KeyEvent event) {
if (mInputEventConsistencyVerifier != null) {
mInputEventConsistencyVerifier.onKeyEvent(event, 1);
}
if ((mPrivateFlags & (PFLAG_FOCUSED | PFLAG_HAS_BOUNDS))
== (PFLAG_FOCUSED | PFLAG_HAS_BOUNDS)) {
if (super.dispatchKeyEvent(event)) {
return true;
}
} else if (mFocused != null && (mFocused.mPrivateFlags & PFLAG_HAS_BOUNDS)
== PFLAG_HAS_BOUNDS) {
if (mFocused.dispatchKeyEvent(event)) {
return true;
}
}
if (mInputEventConsistencyVerifier != null) {
mInputEventConsistencyVerifier.onUnhandledEvent(event, 1);
}
return false;
}
在ViewGroup中会记录当前的焦点View。如果是当前的ViewGroup带上了焦点,则会调用父类的dispatchKeyEvent方法。否则则尝试的查找当前的ViewGroup中焦点View的dispatchKeyEvent继续分发Key事件。
View dispatchKeyEvent
public boolean dispatchKeyEvent(KeyEvent event) {
if (mInputEventConsistencyVerifier != null) {
mInputEventConsistencyVerifier.onKeyEvent(event, 0);
}
ListenerInfo li = mListenerInfo;
if (li != null && li.mOnKeyListener != null && (mViewFlags & ENABLED_MASK) == ENABLED
&& li.mOnKeyListener.onKey(this, event.getKeyCode(), event)) {
return true;
}
if (event.dispatch(this, mAttachInfo != null
? mAttachInfo.mKeyDispatchState : null, this)) {
return true;
}
if (mInputEventConsistencyVerifier != null) {
mInputEventConsistencyVerifier.onUnhandledEvent(event, 0);
}
return false;
}
能够在这里看到了此时会回调我们给当前View设置的mOnKeyListener回调onKey方法。
这样就完成了对Key事件的监听。
ViewRootImpl Motion触点事件分发
我们回到ViewPostImeInputStage中对Motion的触点事件处理processPointerEvent的考察。
private int processPointerEvent(QueuedInputEvent q) {
final MotionEvent event = (MotionEvent)q.mEvent;
mAttachInfo.mUnbufferedDispatchRequested = false;
mAttachInfo.mHandlingPointerEvent = true;
boolean handled = mView.dispatchPointerEvent(event);
...
return handled ? FINISH_HANDLED : FORWARD;
}
很简单就是调用了DecorView的dispatchPointerEvent方法。而DecorView的dispatchPointerEvent就是调用了View的dispatchPointerEvent
View dispatchPointerEvent
public final boolean dispatchPointerEvent(MotionEvent event) {
if (event.isTouchEvent()) {
return dispatchTouchEvent(event);
} else {
return dispatchGenericMotionEvent(event);
}
}
这里就会判断是否是触点事件,如果是则调用dispatchTouchEvent方法,否则则dispatchGenericMotionEvent处理。我们考察dispatchTouchEvent触点事件的分发。
ViewGroup dispatchTouchEvent
从这个方法开始,就是我们熟悉的事件分发处理:
public boolean dispatchTouchEvent(MotionEvent ev) {
...
boolean handled = false;
if (onFilterTouchEventForSecurity(ev)) {
final int action = ev.getAction();
final int actionMasked = action & MotionEvent.ACTION_MASK;
if (actionMasked == MotionEvent.ACTION_DOWN) {
cancelAndClearTouchTargets(ev);
resetTouchState();
}
final boolean intercepted;
if (actionMasked == MotionEvent.ACTION_DOWN
|| mFirstTouchTarget != null) {
final boolean disallowIntercept = (mGroupFlags & FLAG_DISALLOW_INTERCEPT) != 0;
if (!disallowIntercept) {
//核心事件1
intercepted = onInterceptTouchEvent(ev);
ev.setAction(action); // restore action in case it was changed
} else {
intercepted = false;
}
} else {
intercepted = true;
}
...
final boolean canceled = resetCancelNextUpFlag(this)
|| actionMasked == MotionEvent.ACTION_CANCEL;
final boolean split = (mGroupFlags & FLAG_SPLIT_MOTION_EVENTS) != 0;
TouchTarget newTouchTarget = null;
boolean alreadyDispatchedToNewTouchTarget = false;
if (!canceled && !intercepted) {
View childWithAccessibilityFocus = ev.isTargetAccessibilityFocus()
? findChildWithAccessibilityFocus() : null;
if (actionMasked == MotionEvent.ACTION_DOWN
|| (split && actionMasked == MotionEvent.ACTION_POINTER_DOWN)
|| actionMasked == MotionEvent.ACTION_HOVER_MOVE) {
final int actionIndex = ev.getActionIndex(); // always 0 for down
final int idBitsToAssign = split ? 1 << ev.getPointerId(actionIndex)
: TouchTarget.ALL_POINTER_IDS;
removePointersFromTouchTargets(idBitsToAssign);
final int childrenCount = mChildrenCount;
if (newTouchTarget == null && childrenCount != 0) {
final float x = ev.getX(actionIndex);
final float y = ev.getY(actionIndex);
final ArrayList preorderedList = buildTouchDispatchChildList();
final boolean customOrder = preorderedList == null
&& isChildrenDrawingOrderEnabled();
final View[] children = mChildren;
for (int i = childrenCount - 1; i >= 0; i--) {
final int childIndex = getAndVerifyPreorderedIndex(
childrenCount, i, customOrder);
final View child = getAndVerifyPreorderedView(
preorderedList, children, childIndex);
if (!canViewReceivePointerEvents(child)
|| !isTransformedTouchPointInView(x, y, child, null)) {
ev.setTargetAccessibilityFocus(false);
continue;
}
newTouchTarget = getTouchTarget(child);
if (newTouchTarget != null) {
newTouchTarget.pointerIdBits |= idBitsToAssign;
break;
}
if (dispatchTransformedTouchEvent(ev, false, child, idBitsToAssign)) {
mLastTouchDownTime = ev.getDownTime();
if (preorderedList != null) {
// childIndex points into presorted list, find original index
for (int j = 0; j < childrenCount; j++) {
if (children[childIndex] == mChildren[j]) {
mLastTouchDownIndex = j;
break;
}
}
} else {
mLastTouchDownIndex = childIndex;
}
mLastTouchDownX = ev.getX();
mLastTouchDownY = ev.getY();
newTouchTarget = addTouchTarget(child, idBitsToAssign);
alreadyDispatchedToNewTouchTarget = true;
break;
}
...
}
if (preorderedList != null) preorderedList.clear();
}
if (newTouchTarget == null && mFirstTouchTarget != null) {
newTouchTarget = mFirstTouchTarget;
while (newTouchTarget.next != null) {
newTouchTarget = newTouchTarget.next;
}
newTouchTarget.pointerIdBits |= idBitsToAssign;
}
}
}
// Dispatch to touch targets.
if (mFirstTouchTarget == null) {
handled = dispatchTransformedTouchEvent(ev, canceled, null,
TouchTarget.ALL_POINTER_IDS);
} else {
TouchTarget predecessor = null;
TouchTarget target = mFirstTouchTarget;
while (target != null) {
final TouchTarget next = target.next;
if (alreadyDispatchedToNewTouchTarget && target == newTouchTarget) {
handled = true;
} else {
final boolean cancelChild = resetCancelNextUpFlag(target.child)
|| intercepted;
if (dispatchTransformedTouchEvent(ev, cancelChild,
target.child, target.pointerIdBits)) {
handled = true;
}
if (cancelChild) {
if (predecessor == null) {
mFirstTouchTarget = next;
} else {
predecessor.next = next;
}
target.recycle();
target = next;
continue;
}
}
predecessor = target;
target = next;
}
}
if (canceled
|| actionMasked == MotionEvent.ACTION_UP
|| actionMasked == MotionEvent.ACTION_HOVER_MOVE) {
resetTouchState();
} else if (split && actionMasked == MotionEvent.ACTION_POINTER_UP) {
final int actionIndex = ev.getActionIndex();
final int idBitsToRemove = 1 << ev.getPointerId(actionIndex);
removePointersFromTouchTargets(idBitsToRemove);
}
}
...
return handled;
}
在这个过程中如下执行了几个核心逻辑:
- 1.onInterceptTouchEvent 校验当前的ViewGroup是否需要拦截当前事件分发到子View。
- 2.如果不进行拦截事件分发,则代表可以继续分发触点事件。首先会对当前ViewGroup中所有的子View先按照z轴的顺序排序。然后按照这个顺序遍历每一个子View.
- 1.为了进行优化,ViewGroup会记录TouchTarget对象链表。TouchTarget这个链表实际上就是记录每一次可以进行焦点处理的子View。通过isTransformedTouchPointInView方法校验当前的触点是否在子View范围中,如果当前能够获取到TouchTarget对象,则跳出当前遍历z轴顺序的循环。并在下面一个新循环中处理dispatchTransformedTouchEvent。
- 2.如果TouchTarget中获取不到有效的触点对象,说明该View已经清空了一次TouchTarget链表或者第一次。则会dispatchTransformedTouchEvent处理每一个子View成功后,为对应的子View添加一个对应的TouchTarget。
来看看isTransformedTouchPointInView是怎么判断触点事件在View的范围:
protected boolean isTransformedTouchPointInView(float x, float y, View child,
PointF outLocalPoint) {
final float[] point = getTempPoint();
point[0] = x;
point[1] = y;
transformPointToViewLocal(point, child);
final boolean isInView = child.pointInView(point[0], point[1]);
if (isInView && outLocalPoint != null) {
outLocalPoint.set(point[0], point[1]);
}
return isInView;
}
public boolean pointInView(float localX, float localY, float slop) {
return localX >= -slop && localY >= -slop && localX < ((mRight - mLeft) + slop) &&
localY < ((mBottom - mTop) + slop);
}
很简单知道子View的四个边缘和滑动的距离,只要在这四个区域内即可。
核心分发给子View的核心是dispatchTransformedTouchEvent。
ViewGroup dispatchTransformedTouchEvent
private boolean dispatchTransformedTouchEvent(MotionEvent event, boolean cancel,
View child, int desiredPointerIdBits) {
final boolean handled;
final int oldAction = event.getAction();
...
final int oldPointerIdBits = event.getPointerIdBits();
final int newPointerIdBits = oldPointerIdBits & desiredPointerIdBits;
if (newPointerIdBits == 0) {
return false;
}
final MotionEvent transformedEvent;
...
if (child == null) {
handled = super.dispatchTouchEvent(transformedEvent);
} else {
final float offsetX = mScrollX - child.mLeft;
final float offsetY = mScrollY - child.mTop;
transformedEvent.offsetLocation(offsetX, offsetY);
if (! child.hasIdentityMatrix()) {
transformedEvent.transform(child.getInverseMatrix());
}
handled = child.dispatchTouchEvent(transformedEvent);
}
// Done.
transformedEvent.recycle();
return handled;
}
如果child为null,说明可能在这个ViewGroup中没找到需要触点处理的子View。则调用了父类View的dispatchTouchEvent。
如果child不为null,则调用该子View的dispatchTouchEvent方法。
View dispatchTouchEvent
public boolean dispatchTouchEvent(MotionEvent event) {
...
boolean result = false;
if (mInputEventConsistencyVerifier != null) {
mInputEventConsistencyVerifier.onTouchEvent(event, 0);
}
final int actionMasked = event.getActionMasked();
if (actionMasked == MotionEvent.ACTION_DOWN) {
stopNestedScroll();
}
if (onFilterTouchEventForSecurity(event)) {
if ((mViewFlags & ENABLED_MASK) == ENABLED && handleScrollBarDragging(event)) {
result = true;
}
ListenerInfo li = mListenerInfo;
if (li != null && li.mOnTouchListener != null
&& (mViewFlags & ENABLED_MASK) == ENABLED
&& li.mOnTouchListener.onTouch(this, event)) {
result = true;
}
if (!result && onTouchEvent(event)) {
result = true;
}
}
if (!result && mInputEventConsistencyVerifier != null) {
mInputEventConsistencyVerifier.onUnhandledEvent(event, 0);
}
if (actionMasked == MotionEvent.ACTION_UP ||
actionMasked == MotionEvent.ACTION_CANCEL ||
(actionMasked == MotionEvent.ACTION_DOWN && !result)) {
stopNestedScroll();
}
return result;
}
在这个过程中按照顺序执行如下的步骤:
- 1.判断当前是ACTION_DOWN 则暂停滑动
- 2.判断mOnTouchListener不为空,先执行mOnTouchListener的onTouch方法。
- 3.回调onTouchEvent方法
- 4.判断到是ACTION_UP或者ACTION_CANCEL或者ACTION_DOWN,且不是拽动则暂停滑动。
View onTouchEvent
public boolean onTouchEvent(MotionEvent event) {
final float x = event.getX();
final float y = event.getY();
final int viewFlags = mViewFlags;
final int action = event.getAction();
final boolean clickable = ((viewFlags & CLICKABLE) == CLICKABLE
|| (viewFlags & LONG_CLICKABLE) == LONG_CLICKABLE)
|| (viewFlags & CONTEXT_CLICKABLE) == CONTEXT_CLICKABLE;
if ((viewFlags & ENABLED_MASK) == DISABLED) {
if (action == MotionEvent.ACTION_UP && (mPrivateFlags & PFLAG_PRESSED) != 0) {
setPressed(false);
}
mPrivateFlags3 &= ~PFLAG3_FINGER_DOWN;
return clickable;
}
if (mTouchDelegate != null) {
if (mTouchDelegate.onTouchEvent(event)) {
return true;
}
}
if (clickable || (viewFlags & TOOLTIP) == TOOLTIP) {
switch (action) {
case MotionEvent.ACTION_UP:
mPrivateFlags3 &= ~PFLAG3_FINGER_DOWN;
...
boolean prepressed = (mPrivateFlags & PFLAG_PREPRESSED) != 0;
if ((mPrivateFlags & PFLAG_PRESSED) != 0 || prepressed) {
boolean focusTaken = false;
if (isFocusable() && isFocusableInTouchMode() && !isFocused()) {
focusTaken = requestFocus();
}
if (prepressed) {
setPressed(true, x, y);
}
if (!mHasPerformedLongPress && !mIgnoreNextUpEvent) {
removeLongPressCallback();
if (!focusTaken) {
if (mPerformClick == null) {
mPerformClick = new PerformClick();
}
if (!post(mPerformClick)) {
performClickInternal();
}
}
}
if (mUnsetPressedState == null) {
mUnsetPressedState = new UnsetPressedState();
}
if (prepressed) {
postDelayed(mUnsetPressedState,
ViewConfiguration.getPressedStateDuration());
} else if (!post(mUnsetPressedState)) {
mUnsetPressedState.run();
}
removeTapCallback();
}
mIgnoreNextUpEvent = false;
break;
case MotionEvent.ACTION_DOWN:
...
break;
case MotionEvent.ACTION_CANCEL:
...
break;
case MotionEvent.ACTION_MOVE:
....
break;
}
return true;
}
return false;
}
我们只需要关注Up手势中做了比较重要的逻辑:
- 如果可以进行聚焦,但是没有焦点则先requestFocus进行焦点的请求
- 如果prepressed为true,则调用setPressed把下按状态设置为true
- 调用post发送PerformClick的runnable,如果发送失败则调用performClickInternal直接发送onClick方法。
public boolean performClick() {
notifyAutofillManagerOnClick();
final boolean result;
final ListenerInfo li = mListenerInfo;
if (li != null && li.mOnClickListener != null) {
playSoundEffect(SoundEffectConstants.CLICK);
li.mOnClickListener.onClick(this);
result = true;
} else {
result = false;
}
sendAccessibilityEvent(AccessibilityEvent.TYPE_VIEW_CLICKED);
notifyEnterOrExitForAutoFillIfNeeded(true);
return result;
}
总结
到这里就结束了对IMS相关的逻辑分析。
根据上一次的设计图,来展示更加完整的结构图
App进程初始化IMS的监听:
- 当Activity初始化后,在resume生命周期,会调用ViewRootImpl的setView方法。
- 在这个方法中,会调用addWindow,把初始化好的InputChannel传送到WMS的WindowState中。WindowState会为InputChannel初始化一对socket文件描述符,一端在监听IMS的事件发送,另一段是监听发送的到来。
- App主线程的WindowInputEventReceiver 对象会通过Looper会监听InputChannel的接收端。一旦接收端有事件发送到来,就会唤醒Looper在InputConsumer中进行消费。
- InputConsumer消费触点对象后,会回调到WindowInputEventReceiver中,调用Looper发送一个IMS发送对象,准备在InputStage中进行处理。
InputStage是输入事件的处理阶段,是一种很典型的责任链设计模式,每一个处理阶段都会知道下一个处理阶段是什么,这种设计在App开发中十分常见,对于冗长的业务,我们可以通过这种设计灵活的进行解藕。
- NativePreImeInputStage 预处理InputQueue
- ViewPreImeInputStage 这个InputStage是预处理KeyEvent,把键盘等事件通过DecorView的dispatchKeyEventPreIme进行预处理分发。
- ImeInputStage专门处理软键盘的事件分发
- EarlyPostImeInputStage 处理mFallbackEventHandler的Key事件。这个对象是PhoneFallbackEventHandler,里面处理了手机屏幕外按键的事件处理,如多媒体音量,通话音量等等。还处理了Touch模式以及AutofillManager
- NativePostImeInputStage继续处理了之前还需要继续处理InputQueue中的事件
- ViewPostImeInputStage 对Key和Motion进行View层级的事件分发
- SyntheticInputStage 根据设备进行不同的输入事件入队处理(如触屏球等)。
关于InputQueue和SyntheticInputStage我们不需要过多的关注。我们App开发还是主要关注ViewPostImeInputStage是如何分发的。
事件分发的流程顺序:
- ViewGroup的dispatchTouchEvent 分发事件
- ViewGroup的onInterceptTouchEvent 拦截事件
- View的dispatchTouchEvent
- onTouchListener.onTouch 的监听回调
- onTouchEvent 方法回调
- onClickListener.onClick 当是手势抬起时,点击事件回调
这个流程是面试最常见的问题之一,记住即可。
后记
原计划是准备聊聊PMS的安装Apk原理。不过,我个人觉得还是先把另外三大组件都聊一边,我们再回来聊聊PMS的安装原理。
然后以PMS安装的dex文件的介绍,来开始Android art虚拟机的原理介绍。