- Apache大数据旭哥优选大数据选题
Apache大数据旭
大数据定制选题javahadoopspark开发语言ideahive数据库架构
定制旭哥服务,一对一,无中介包安装+答疑+售后态度和技术都很重要定制按需求做要求不高就实惠一点定制需提前沟通好怎么做,这样才能避免不必要的麻烦python、flask、Django、mapreduce、mysqljava、springboot、vue、echarts、hadoop、spark、hive、hbase、flink、SparkStreaming、kafka、flume、sqoop分析+推
- AI大模型训练教程
Small踢倒coffee_氕氘氚
python自学经验分享笔记
1.引言随着人工智能技术的快速发展,大模型(如GPT-3、BERT等)在自然语言处理、计算机视觉等领域取得了显著的成果。训练一个大模型需要大量的计算资源、数据和专业知识。本教程将带你了解如何从零开始训练一个AI大模型。2.准备工作2.1硬件要求GPU:推荐使用NVIDIA的高性能GPU,如A100、V100等。内存:至少64GBRAM。存储:SSD存储,至少1TB。#2.2软件环境操作系统:Lin
- Java后端开发技术详解
小二爱编程·
java开发语言
Java作为一门成熟的编程语言,已广泛应用于后端开发领域。其强大的生态系统和广泛的支持库使得Java成为许多企业和开发者的首选后端开发语言。随着云计算、微服务架构和大数据技术的兴起,Java后端开发的技术栈也不断演进。本文将详细介绍Java后端开发的核心技术,包括Java基础、常见框架、数据库操作、缓存技术、异步编程等。1.Java基础:理解面向对象的编程Java是一种面向对象的编程语言,面向对象
- 使用Jupyter Notebook进行深度学习编程 - 深度学习教程
shandianfk_com
ChatGPTAIjupyter深度学习ide
大家好,今天我们要聊聊如何使用JupyterNotebook进行深度学习编程。深度学习是人工智能领域中的一项重要技术,通过模仿人脑神经网络的方式进行学习和分析。JupyterNotebook作为一个强大的工具,可以帮助我们轻松地进行深度学习编程,尤其适合初学者和研究人员。本文将带领大家一步步了解如何在JupyterNotebook中开展深度学习项目。一、什么是JupyterNotebook?Jup
- 英伟达常用GPU参数速查表,含B300.....
Ai17316391579
深度学习服务器人工智能机器学习服务器电脑计算机视觉深度学习神经网络
英伟达常用GPU参数速查表,收藏备用:含RTX5090、RTX4090D、L40、L20、A100、A800、H100、H800、H20、H200、B200、B300、GB300.....专注于高性能计算人工智能细分领域kyfwq001#5090##4090##英伟达“新核弹”B200发布##英伟达##英伟达B300##GPU##服务器##显卡##英伟达H800/A800芯片将禁售#
- IDC权威认证!永洪科技入选 IDC「GBI图谱」,点亮生成式 BI 价值灯塔
永洪科技
科技人工智能BI大数据数据分析
大数据市场正在稳步前进,生成式AI已成为厂商服务的重点方向,其发展离不开数据底座建设和数据工程管理,反过来AI也会帮助开发运维人员、业务人员和管理层更好地使用、查询数据。IDC调研数据显示,在生成式AI的驱动下,未来5年企业在数据管理和数据分析基础设施建设的投资增长率将分别达到8.7%和9.2%。近日,国际咨询机构IDC发布了《中国数据智能市场生态图谱V5.0》,在这一领域,永洪科技以其创新前沿的
- 打造金融数据新引擎,看永洪科技助力头部农信社搭建一站式分析平台
永洪科技
金融数据可视化BI数据分析大数据
在数字化转型的浪潮中,金融行业作为经济发展的核心引擎,正加速探索数字化、智能化的新路径。永洪科技,近日成功助力某省农村信用社联合社(简称:Z企业)完成了其数字化转型的重要一步,通过部署先进的商业智能解决方案,为Z企业的业务升级与效能提升注入了强劲动力。随着智能金融时代的来临,以大数据、人工智能、移动互联等新兴技术为核心的金融科技持续赋能银行金融业务数字化、智能化、开放化的发展,为金融机构营销体系的
- 景联文科技:以高质量数据标注推动人工智能领域创新与发展
景联文科技
科技人工智能数据标注
在当今这个由数据驱动的时代,高质量的数据标注对于推动机器学习、自然语言处理(NLP)、计算机视觉等领域的发展具有不可替代的重要性。数据标注过程涉及对原始数据进行加工,通过标注特定对象的特征来生成能够被机器学习模型识别和使用的编码格式,从而使数据更具有意义和可解读性。数据标注的主要类型包括:图像标注:指在图片中标识出目标物体的位置、形状或类别等信息,如自动驾驶技术中的行人、车辆及交通标志的识别。文本
- 读书笔记五 ---大数据之路--数仓分层
qq_38215991
bigdata大数据
数据分层在流式数据模型中,数据模型整体上分为五层。ODS层跟离线系统的定义一样,ODS层属于操作数据层,是直接从业务系统采集过来的最原始数据(进行了数据清洗),包含了所有业务的变更过程,数据粒度也是最细的。在这一层,实时和离线在源头上是统一的,这样的好处是用同一份数据加工出来的指标,口径基本是统一的,可以更方便进行实时和离线问数据比对。例如:原始的订单变更记录数据、服务器引擎的访同日志。(原始数据
- 人工智能与网络信息技术的深度融合
鸭鸭鸭进京赶烤
学术会议人工智能AI编程ai机器人计算机视觉网络计算机网络
在当今时代,人工智能(AI)和网络信息技术正以前所未有的速度推动着社会变革。从通用人工智能(AGI)到具身智能的普及,AI不仅实现了技术上的飞跃,也在各个行业展现出巨大的应用潜力。随着技术的不断迭代,我们迎来了许多创新应用,例如AI在电子信息技术中的应用,通过算法优化与升级,显著提高了处理效率和准确性。网络信息技术同样在飞速发展。面向2030年的未来网络发展趋势表明,网络将支撑万亿级、人机物、全时
- DeepSeek、Grok 与 ChatGPT 三巨头:技术架构与应用场景的全方位解析
云策量化
Deepseekchatgptdeepseekgrok
前言在当今人工智能领域,DeepSeek、Grok和ChatGPT作为语言模型的三巨头,各自凭借独特的技术架构和广泛的应用场景,在自然语言处理领域占据着重要地位。本文将对这三款模型的技术架构和应用场景进行全方位解析,以期为读者提供深入的了解和有价值的参考。一、技术架构(一)DeepSeekDeepSeek是由DeepSeek团队开发的一款大型语言模型,其技术架构基于深度学习中的Transforme
- 探索AI模型的巅峰之战:ChatGPT、DeepSeek与Grok 3,谁才是最强?
温暖阳光阿斌
人工智能chatgpt
近年来,人工智能领域正处于一场高速迭代的革命中。大型语言模型(LLMs)如ChatGPT、DeepSeek和Grok3纷纷亮相,各展所长,为人们带来了前所未有的体验。在这场"谁是最强"的竞争中,每一方都展现出了令人惊叹的能力和独特的优势。然而,这些模型之间的差异和特点,究竟是什么?它们各自的优势在哪里?又有哪些隐藏的短板?本文将带您深入了解这三位AI巨头的亮点与争议,共同探讨它们在AI领域的位置,
- 使用LangGraph迁移MapReduceDocumentsChain进行长文档的摘要
dgay_hua
python
在大数据处理和文本分析领域,MapReduce是一种非常重要的策略,用于处理和分析大型数据集。具体到文本处理方面,MapReduceDocumentsChain구현了一种map-reduce策略,可以有效地处理长文本。本文将介绍如何从MapReduceDocumentsChain迁移到LangGraph,并探讨LangGraph在流处理、检查点恢复等方面的优势。技术背景介绍MapReduceDoc
- 使用DeepSeek R1大模型编写迅投 QMT 的量化交易 Python 代码
wtsolutions
qmt量化交易pythonqmtdeepseek量化交易代码生成
随着人工智能技术的迅猛发展,利用AI工具提升工作效率已成为现代开发者的重要手段。在使用deepseek官方网页生成迅投QMT代码的时候,deepseek给出的代码是xtquant代码,也就是miniqmt代码,并不是我们传统意义上说的大QMT可用的代码。因此,我们需要自建一个知识库,让deepseek根据我的知识库里面的知识,去帮我生成大QMT可用的交易代码。一、建立迅投QMT的知识库建立迅投QM
- GPU架构分类
大明者省
架构
一、NVIDIA的GPU架构NVIDIA是全球领先的GPU生产商,其GPU架构在图形渲染、高性能计算和人工智能等领域具有广泛应用。NVIDIA的GPU架构经历了多次迭代,以下是一些重要的架构:1.Tesla(特斯拉)架构(2006年发布)特点:NVIDIA推出的首个通用GPU计算架构,支持使用C语言进行GPU编程,标志着GPU开始从专用图形处理器转变为通用数据并行处理器。性能:具有128个流处理器
- Python用Bokeh处理大规模数据可视化的最佳实践
一键难忘
Bokehpython开发语言
用Bokeh处理大规模数据可视化的最佳实践在大规模数据处理和分析中,数据可视化是一个至关重要的环节。Bokeh是一个在Python生态中广泛使用的交互式数据可视化库,它具有强大的可扩展性和灵活性。本文将介绍如何使用Bokeh处理大规模数据可视化,并提供一些最佳实践和代码实例,帮助你高效地展示大数据集中的重要信息。1.为什么选择Bokeh?Bokeh是一个专为浏览器呈现而设计的可视化库,它支持高效渲
- 芯片的未来发展趋势
iccnewer
2024年,该行业将专注于AI/ML、RISC-V、量子、安全等发展趋势。今年年初,大多数人从未听说过生成式人工智能。现在整个世界都在竞相利用它,而这仅仅是个开始。量子计算、6G、智能基础设施等新市场领域专用处理正在加速对更快、更高效、更多数据的需求。与每隔几年等待下一个工艺节点的日子相比,未来几年的事件将与电话或汽车的引入一样重要。但可能不会只有一种创新技术,将会有很多技术一起以一种将让科技界惊
- 分页优化之——游标分页
PhilipJ0303
Java面试java数据库优化游标分页分页查询
游标分页(Cursor-basedPagination)是一种高效的分页方式,特别适用于大数据集和无限滚动的场景。与传统的基于页码的分页(如page=1&size=10)不同,游标分页通过一个唯一的游标(通常是时间戳或唯一ID)来标记分页的位置,避免了传统分页在数据变动时的重复或遗漏问题。以下是游标分页在前后端的实现方式:1.游标分页的核心概念游标(Cursor):游标是一个唯一标识符,通常是数据
- 轻松入门Apache SeaTunnel:数据集成利器
窝窝和牛牛
SeaTunnelETL数据集成
文章目录轻松入门ApacheSeaTunnel:数据集成利器什么是SeaTunnel基本原理运行流程SeaTunnelvsDataX:两大数据集成工具对比实战场景:MySQL数据同步至ElasticsearchSeaTunnel实现方案DataX实现方案实现原理对比底层依赖环境方案优缺点分析快速上手环境准备简单示例总结轻松入门ApacheSeaTunnel:数据集成利器什么是SeaTunnelAp
- Python程序设计(入门)
xyyykx
python开发语言
目录一丶Python概述二丶Python数据类型三丶常用的进制四丶字符串型五丶程序控制结构六丶组合数据类型一丶Python概述Python是一种高级编程语言,由GuidovanRossum于1991年开发并发布。它具有简洁、易读、易学的语法特点,被广泛应用于多个领域,包括软件开发、数据科学、人工智能、网络编程等。以下是Python的一些主要特点和优势:简单易学:Python的语法简洁明了,易于理解
- LLM:软件测试的颠覆性力量
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
LLM:软件测试的颠覆性力量关键词:大语言模型(LLM)、软件测试、人工智能、测试自动化、测试效率、质量保证、测试革新1.背景介绍在当今快速发展的软件行业中,测试一直是确保产品质量的关键环节。随着人工智能技术的飞速进步,特别是大语言模型(LargeLanguageModels,简称LLM)的出现,软件测试领域正经历着前所未有的变革。LLM凭借其强大的自然语言处理能力和广泛的知识储备,正在重塑我们对
- DS/ML:数据科学技术之数据科学生命周期(四大层次+机器学习六大阶段+数据挖掘【5+6+6+4+4+1】步骤)的全流程最强学习路线讲解之详细攻略
一个处女座的程序猿
资深文章(前沿/经验/创新)DataScienceML数据科学数据科学的生命周期机器学习
DS/ML:数据科学技术之数据科学生命周期(四大层次+机器学习六大阶段+数据挖掘【5+6+6+4+4+1】步骤)的全流程最强学习路线讲解之详细攻略导读:本文章是博主在数据科学和机器学习领域,先后实战过几百个应用案例之后的精心总结,应该是完全覆盖了数据科学的整个生命周期及其各个阶段的要点。其中机器学习领域六大阶段更是在整个数据科学生命周期中扮演着极其重要的角色。同时,因为涉及到博主出书中出版社要求在
- 深入了解盘古大模型:技术、应用与未来
Hardess-god
Literaturereview人工智能
随着人工智能技术的迅猛发展,预训练大模型已成为AI领域最前沿、最热门的研究方向之一。近年来,中国自主研发的大模型之一——盘古模型(PanGuModel)逐渐进入公众视野,凭借其强大的性能和广泛的应用前景,引发了行业内外的广泛关注。什么是盘古大模型?盘古大模型是华为公司联合多家科研机构共同研发的超大规模预训练语言模型。该模型以中文数据为主进行训练,旨在推动中文自然语言处理(NLP)以及跨模态应用的技
- 【人工智能之大模型】阐述生成式语言模型的工作机理...(二)
985小水博一枚呀
大大大模型知识点人工智能语言模型自然语言处理机器学习神经网络
【人工智能之大模型】阐述生成式语言模型的工作机理…(二)【人工智能之大模型】阐述生成式语言模型的工作机理…(二)文章目录【人工智能之大模型】阐述生成式语言模型的工作机理...(二)前言4.代码逐行解释TransformerBlock类初始化前向传播GenerativeLM类初始化前向传播推理示例测试生成5.总结欢迎宝子们点赞、关注、收藏!欢迎宝子们批评指正!祝所有的硕博生都能遇到好的导师!好的审稿
- 人工智能 - 通用 AI Agent 之 LangManus、Manus、OpenManus 和 OWL 技术选型
天机️灵韵
具身智能人工智能人工智能具身智能智能体
一、核心项目概览1.Manus(闭源通用AIAgent)定位:全球首个全流程自动化通用AIAgent,GAIA基准测试SOTA水平。核心能力:全流程自动化:从任务规划(如撰写报告)到执行(代码生成、表格制作)的端到端处理。智能纠错机制:基于沙箱环境的实时错误反思与调整(类似CodeAct技术)。云端依赖:需联网运行,集成浏览器操作、信息检索等工具。局限性:闭源且采用邀请制,二手市场邀请码溢价至数万
- 知识图谱中NLP新技术
魔王阿卡纳兹
知识图谱入门大数据治理与分析知识图谱自然语言处理人工智能
知识图谱与自然语言处理(NLP)的结合是当前人工智能领域的前沿方向,其技术发展呈现多维度融合与场景深化的特点。以下从核心技术突破、应用场景创新及未来趋势三个层面,系统梳理知识图谱中NLP的最新进展:一、核心技术突破基于预训练模型的图谱构建与增强预训练语言模型与知识嵌入融合:以BERT、KEPLER为代表的模型通过联合优化知识嵌入(KE)和语言建模目标,将知识图谱中的结构化知识融入预训练过程,显著提
- 掌握ChatGPT写代码的秘诀:开发者的完整指南
酷酷的崽798
机器学习chatgpt
文章目录前言:如何利用ChatGPT来写代码:一个深度指南1.ChatGPT的基本功能概述2.利用ChatGPT辅助代码编写的好处3.ChatGPT支持的编程语言4.如何向ChatGPT提问以获取最佳结果5.实际应用案例6.ChatGPT的局限性及其解决方法7.关于隐私和安全性的注意事项8.未来展望结论前言:如何利用ChatGPT来写代码:一个深度指南近年来,人工智能技术取得了飞跃性的进展,尤其是
- C++基础系列【26】排序和查找算法
程序喵大人
C++基础系列c语言算法开发语言c++
博主介绍:程序喵大人35-资深C/C++/Rust/Android/iOS客户端开发10年大厂工作经验嵌入式/人工智能/自动驾驶/音视频/游戏开发入门级选手《C++20高级编程》《C++23高级编程》等多本书籍著译者更多原创精品文章,首发gzh,见文末记得订阅专栏,以防走丢C++基础系列专栏C语言基础系列专栏C++大佬养成攻略专栏C++训练营排序与查找算法的重要性不用过多介绍了吧,面试也经常考察。
- 探索数据安全新境界:Apache Spark SQL Ranger Security插件深度揭秘
乌昱有Melanie
探索数据安全新境界:ApacheSparkSQLRangerSecurity插件深度揭秘项目地址:https://gitcode.com/gh_mirrors/sp/spark-ranger随着大数据的爆炸性增长,数据安全性成为了企业不可忽视的核心议题。在这一背景下,【ApacheSparkSQLRangerSecurityPlugin】以其强大的数据访问控制能力脱颖而出,成为数据处理领域的明星级
- Java 大视界 -- Java 大数据在智能医疗远程会诊与专家协作中的技术支持(146)
青云交
大数据新视界Java大视界java大数据智能医疗远程会诊专家协作数据安全病例诊断
亲爱的朋友们,热烈欢迎来到青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而我的博客正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也期待你毫无保留地分享独特见解,愿我们于此携手成长,共赴新程!一、欢迎加入【福利社群】点击快速加入:青云交灵犀技韵交响盛汇福利社群点击快速加入2:2024CSDN博客之星创作交流营(NEW)二、本博客的精华专栏:大数据新视
- jvm调优总结(从基本概念 到 深度优化)
oloz
javajvmjdk虚拟机应用服务器
JVM参数详解:http://www.cnblogs.com/redcreen/archive/2011/05/04/2037057.html
Java虚拟机中,数据类型可以分为两类:基本类型和引用类型。基本类型的变量保存原始值,即:他代表的值就是数值本身;而引用类型的变量保存引用值。“引用值”代表了某个对象的引用,而不是对象本身,对象本身存放在这个引用值所表示的地址的位置。
- 【Scala十六】Scala核心十:柯里化函数
bit1129
scala
本篇文章重点说明什么是函数柯里化,这个语法现象的背后动机是什么,有什么样的应用场景,以及与部分应用函数(Partial Applied Function)之间的联系 1. 什么是柯里化函数
A way to write functions with multiple parameter lists. For instance
def f(x: Int)(y: Int) is a
- HashMap
dalan_123
java
HashMap在java中对很多人来说都是熟的;基于hash表的map接口的非同步实现。允许使用null和null键;同时不能保证元素的顺序;也就是从来都不保证其中的元素的顺序恒久不变。
1、数据结构
在java中,最基本的数据结构无外乎:数组 和 引用(指针),所有的数据结构都可以用这两个来构造,HashMap也不例外,归根到底HashMap就是一个链表散列的数据
- Java Swing如何实时刷新JTextArea,以显示刚才加append的内容
周凡杨
java更新swingJTextArea
在代码中执行完textArea.append("message")后,如果你想让这个更新立刻显示在界面上而不是等swing的主线程返回后刷新,我们一般会在该语句后调用textArea.invalidate()和textArea.repaint()。
问题是这个方法并不能有任何效果,textArea的内容没有任何变化,这或许是swing的一个bug,有一个笨拙的办法可以实现
- servlet或struts的Action处理ajax请求
g21121
servlet
其实处理ajax的请求非常简单,直接看代码就行了:
//如果用的是struts
//HttpServletResponse response = ServletActionContext.getResponse();
// 设置输出为文字流
response.setContentType("text/plain");
// 设置字符集
res
- FineReport的公式编辑框的语法简介
老A不折腾
finereport公式总结
FINEREPORT用到公式的地方非常多,单元格(以=开头的便被解析为公式),条件显示,数据字典,报表填报属性值定义,图表标题,轴定义,页眉页脚,甚至单元格的其他属性中的鼠标悬浮提示内容都可以写公式。
简单的说下自己感觉的公式要注意的几个地方:
1.if语句语法刚接触感觉比较奇怪,if(条件式子,值1,值2),if可以嵌套,if(条件式子1,值1,if(条件式子2,值2,值3)
- linux mysql 数据库乱码的解决办法
墙头上一根草
linuxmysql数据库乱码
linux 上mysql数据库区分大小写的配置
lower_case_table_names=1 1-不区分大小写 0-区分大小写
修改/etc/my.cnf 具体的修改内容如下:
[client]
default-character-set=utf8
[mysqld]
datadir=/var/lib/mysql
socket=/va
- 我的spring学习笔记6-ApplicationContext实例化的参数兼容思想
aijuans
Spring 3
ApplicationContext能读取多个Bean定义文件,方法是:
ApplicationContext appContext = new ClassPathXmlApplicationContext(
new String[]{“bean-config1.xml”,“bean-config2.xml”,“bean-config3.xml”,“bean-config4.xml
- mysql 基准测试之sysbench
annan211
基准测试mysql基准测试MySQL测试sysbench
1 执行如下命令,安装sysbench-0.5:
tar xzvf sysbench-0.5.tar.gz
cd sysbench-0.5
chmod +x autogen.sh
./autogen.sh
./configure --with-mysql --with-mysql-includes=/usr/local/mysql
- sql的复杂查询使用案列与技巧
百合不是茶
oraclesql函数数据分页合并查询
本片博客使用的数据库表是oracle中的scott用户表;
------------------- 自然连接查询
查询 smith 的上司(两种方法)
&
- 深入学习Thread类
bijian1013
javathread多线程java多线程
一. 线程的名字
下面来看一下Thread类的name属性,它的类型是String。它其实就是线程的名字。在Thread类中,有String getName()和void setName(String)两个方法用来设置和获取这个属性的值。
同时,Thr
- JSON串转换成Map以及如何转换到对应的数据类型
bijian1013
javafastjsonnet.sf.json
在实际开发中,难免会碰到JSON串转换成Map的情况,下面来看看这方面的实例。另外,由于fastjson只支持JDK1.5及以上版本,因此在JDK1.4的项目中可以采用net.sf.json来处理。
一.fastjson实例
JsonUtil.java
package com.study;
impor
- 【RPC框架HttpInvoker一】HttpInvoker:Spring自带RPC框架
bit1129
spring
HttpInvoker是Spring原生的RPC调用框架,HttpInvoker同Burlap和Hessian一样,提供了一致的服务Exporter以及客户端的服务代理工厂Bean,这篇文章主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
在
【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中
- 【Mahout二】基于Mahout CBayes算法的20newsgroup的脚本分析
bit1129
Mahout
#!/bin/bash
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information re
- nginx三种获取用户真实ip的方法
ronin47
随着nginx的迅速崛起,越来越多公司将apache更换成nginx. 同时也越来越多人使用nginx作为负载均衡, 并且代理前面可能还加上了CDN加速,但是随之也遇到一个问题:nginx如何获取用户的真实IP地址,如果后端是apache,请跳转到<apache获取用户真实IP地址>,如果是后端真实服务器是nginx,那么继续往下看。
实例环境: 用户IP 120.22.11.11
- java-判断二叉树是不是平衡
bylijinnan
java
参考了
http://zhedahht.blog.163.com/blog/static/25411174201142733927831/
但是用java来实现有一个问题。
由于Java无法像C那样“传递参数的地址,函数返回时能得到参数的值”,唯有新建一个辅助类:AuxClass
import ljn.help.*;
public class BalancedBTree {
- BeanUtils.copyProperties VS PropertyUtils.copyProperties
诸葛不亮
PropertyUtilsBeanUtils
BeanUtils.copyProperties VS PropertyUtils.copyProperties
作为两个bean属性copy的工具类,他们被广泛使用,同时也很容易误用,给人造成困然;比如:昨天发现同事在使用BeanUtils.copyProperties copy有integer类型属性的bean时,没有考虑到会将null转换为0,而后面的业
- [金融与信息安全]最简单的数据结构最安全
comsci
数据结构
现在最流行的数据库的数据存储文件都具有复杂的文件头格式,用操作系统的记事本软件是无法正常浏览的,这样的情况会有什么问题呢?
从信息安全的角度来看,如果我们数据库系统仅仅把这种格式的数据文件做异地备份,如果相同版本的所有数据库管理系统都同时被攻击,那么
- vi区段删除
Cwind
linuxvi区段删除
区段删除是编辑和分析一些冗长的配置文件或日志文件时比较常用的操作。简记下vi区段删除要点备忘。
vi概述
引文中并未将末行模式单独列为一种模式。单不单列并不重要,能区分命令模式与末行模式即可。
vi区段删除步骤:
1. 在末行模式下使用:set nu显示行号
非必须,随光标移动vi右下角也会显示行号,能够正确找到并记录删除开始行
- 清除tomcat缓存的方法总结
dashuaifu
tomcat缓存
用tomcat容器,大家可能会发现这样的问题,修改jsp文件后,但用IE打开 依然是以前的Jsp的页面。
出现这种现象的原因主要是tomcat缓存的原因。
解决办法如下:
在jsp文件头加上
<meta http-equiv="Expires" content="0"> <meta http-equiv="kiben&qu
- 不要盲目的在项目中使用LESS CSS
dcj3sjt126com
Webless
如果你还不知道LESS CSS是什么东西,可以看一下这篇文章,是我一朋友写给新人看的《CSS——LESS》
不可否认,LESS CSS是个强大的工具,它弥补了css没有变量、无法运算等一些“先天缺陷”,但它似乎给我一种错觉,就是为了功能而实现功能。
比如它的引用功能
?
.rounded_corners{
- [入门]更上一层楼
dcj3sjt126com
PHPyii2
更上一层楼
通篇阅读完整个“入门”部分,你就完成了一个完整 Yii 应用的创建。在此过程中你学到了如何实现一些常用功能,例如通过 HTML 表单从用户那获取数据,从数据库中获取数据并以分页形式显示。你还学到了如何通过 Gii 去自动生成代码。使用 Gii 生成代码把 Web 开发中多数繁杂的过程转化为仅仅填写几个表单就行。
本章将介绍一些有助于更好使用 Yii 的资源:
- Apache HttpClient使用详解
eksliang
httpclienthttp协议
Http协议的重要性相信不用我多说了,HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性(具体区别,日后我们再讨论),它不仅是客户端发送Http请求变得容易,而且也方便了开发人员测试接口(基于Http协议的),即提高了开发的效率,也方便提高代码的健壮性。因此熟练掌握HttpClient是很重要的必修内容,掌握HttpClient后,相信对于Http协议的了解会
- zxing二维码扫描功能
gundumw100
androidzxing
经常要用到二维码扫描功能
现给出示例代码
import com.google.zxing.WriterException;
import com.zxing.activity.CaptureActivity;
import com.zxing.encoding.EncodingHandler;
import android.app.Activity;
import an
- 纯HTML+CSS带说明的黄色导航菜单
ini
htmlWebhtml5csshovertree
HoverTree带说明的CSS菜单:纯HTML+CSS结构链接带说明的黄色导航
在线体验效果:http://hovertree.com/texiao/css/1.htm代码如下,保存到HTML文件可以看到效果:
<!DOCTYPE html >
<html >
<head>
<title>HoverTree
- fastjson初始化对性能的影响
kane_xie
fastjson序列化
之前在项目中序列化是用thrift,性能一般,而且需要用编译器生成新的类,在序列化和反序列化的时候感觉很繁琐,因此想转到json阵营。对比了jackson,gson等框架之后,决定用fastjson,为什么呢,因为看名字感觉很快。。。
网上的说法:
fastjson 是一个性能很好的 Java 语言实现的 JSON 解析器和生成器,来自阿里巴巴的工程师开发。
- 基于Mybatis封装的增删改查实现通用自动化sql
mengqingyu
DAO
1.基于map或javaBean的增删改查可实现不写dao接口和实现类以及xml,有效的提高开发速度。
2.支持自定义注解包括主键生成、列重复验证、列名、表名等
3.支持批量插入、批量更新、批量删除
<bean id="dynamicSqlSessionTemplate" class="com.mqy.mybatis.support.Dynamic
- js控制input输入框的方法封装(数字,中文,字母,浮点数等)
qifeifei
javascript js
在项目开发的时候,经常有一些输入框,控制输入的格式,而不是等输入好了再去检查格式,格式错了就报错,体验不好。 /** 数字,中文,字母,浮点数(+/-/.) 类型输入限制,只要在input标签上加上 jInput="number,chinese,alphabet,floating" 备注:floating属性只能单独用*/
funct
- java 计时器应用
tangqi609567707
javatimer
mport java.util.TimerTask; import java.util.Calendar; public class MyTask extends TimerTask { private static final int
- erlang输出调用栈信息
wudixiaotie
erlang
在erlang otp的开发中,如果调用第三方的应用,会有有些错误会不打印栈信息,因为有可能第三方应用会catch然后输出自己的错误信息,所以对排查bug有很大的阻碍,这样就要求我们自己打印调用的栈信息。用这个函数:erlang:process_display (self (), backtrace).需要注意这个函数只会输出到标准错误输出。
也可以用这个函数:erlang:get_s