Java排序算法-基数排序

基数排序

基数排序(桶排序)介绍:

  1. 基数排序(radix sort)属于“分配式排序”(distribution sort),又称“桶子法”(bucket sort)或bin sort,顾名思义,它是通过键值的各个位的值,将要排序的元素分配至某些“桶”中,达到排序的作用
  2. 基数排序法是属于稳定性的排序,基数排序法的是效率高的稳定性排序法
  3. 基数排序(Radix Sort)是桶排序的扩展
  4. 基数排序是1887 年赫尔曼·何乐礼发明的。它是这样实现的:将整数按位数切割成不同的数字,然后按每个
    位数分别比较。

基数排序基本思想

  1. 将所有待比较数值统一为同样的数位长度,数位较短的数前面补零。然后,从最低位开始,依次进行一次排序。这样从最低位排序一直到最高位排序完成以后, 数列就变成一个有序序列。
  2. 这样说明,比较难理解,下面我们看一个图文解释,理解基数排序的步骤

基数排序图文说明

将数组{53, 3, 542, 748, 14, 214} 使用基数排序, 进行升序排序

  1. 第一轮
    Java排序算法-基数排序_第1张图片

  2. 第二轮
    Java排序算法-基数排序_第2张图片

  3. 第三轮
    Java排序算法-基数排序_第3张图片

代码解析

放入桶的步骤
第一步定义创建:
①桶(放数据的):
int[][] bucket
行是对应位的桶(0~9),列是数据

计数器(放入数据的个数):
int[] bucketElementCounts = new int[10]; (下标是桶,数据是列数)
比如:bucketElementCounts[0]记录的是放在第0个桶数据的个数

第二步放入过程
从数组取出对应值(对应的桶)
int digitOfElement = arr[j] / n % 10;

放入对应桶
bucket[digitOfElement][ bucketElementCounts[digitOfElement]] = arr[j];

放入到对应的
行:digitOfElement
列:bucketElementCounts[digitOfElement]

存入成功对应位的数字(列数)加一
bucketElementCounts[digitOfElement] ++

每放入成功就加一
假如(34,44):放入同一个桶
存入第一个数字的时候:bucketElementCounts[digitOfElement]为1
存入第二个数字的时候:bucketElementCounts[digitOfElement]为2

取出到原数组步骤
①遍历桶的行数:for(int k = 0; k < bucketElementCounts.length; k++)
②如果桶中,有数据,我们才放入到原数组:if(bucketElementCounts[k] != 0)
③遍历桶的列数:for(int l = 0; l < bucketElementCounts[k]; l++)
④依次取出元素放入到原来的数组:arr[index++] = bucket[k][l];

最后
计数器bucketElementCounts[k] = 0;置为0

基数排序代码实现

要求:将数组{53, 3, 542, 748, 14, 214} 使用基数排序, 进行升序排序

  1. 思路分析:前面的图文已经讲明确
  2. 代码实现:
import java.text.SimpleDateFormat;
import java.util.Arrays;
import java.util.Date;

public class RadixSort {

	public static void main(String[] args) {
		int arr[] = { 53, 3, 542, 748, 14, 214};
		
		// 80000000 * 11 * 4 / 1024 / 1024 / 1024 =3.3G 
//		int[] arr = new int[8000000];
//		for (int i = 0; i < 8000000; i++) {
//			arr[i] = (int) (Math.random() * 8000000); // 生成一个[0, 8000000) 数
//		}
		System.out.println("排序前");
		Date data1 = new Date();
		SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
		String date1Str = simpleDateFormat.format(data1);
		System.out.println("排序前的时间是=" + date1Str);
		
		radixSort(arr);
		
		Date data2 = new Date();
		String date2Str = simpleDateFormat.format(data2);
		System.out.println("排序前的时间是=" + date2Str);
		
		System.out.println("基数排序后 " + Arrays.toString(arr));
		
	}

	//基数排序方法
	public static void radixSort(int[] arr) {
		
		//根据前面的推导过程,我们可以得到最终的基数排序代码
		
		//1. 得到数组中最大的数的位数
		int max = arr[0]; //假设第一数就是最大数
		for(int i = 1; i < arr.length; i++) {
			if (arr[i] > max) {
				max = arr[i];
			}
		}
		//得到最大数是几位数
		int maxLength = (max + "").length();
		
		
		//定义一个二维数组,表示10个桶, 每个桶就是一个一维数组
		//说明
		//1. 二维数组包含10个一维数组
		//2. 为了防止在放入数的时候,数据溢出,则每个一维数组(桶),大小定为arr.length
		//3. 明确,基数排序是使用空间换时间的经典算法
		int[][] bucket = new int[10][arr.length];
		
		//为了记录每个桶中,实际存放了多少个数据,我们定义一个一维数组来记录各个桶的每次放入的数据个数
		//可以这里理解
		//比如:bucketElementCounts[0] , 记录的就是  bucket[0] 桶的放入数据个数
		int[] bucketElementCounts = new int[10];
		
		
		//这里我们使用循环将代码处理
		
		for(int i = 0 , n = 1; i < maxLength; i++, n *= 10) {
			//(针对每个元素的对应位进行排序处理), 第一次是个位,第二次是十位,第三次是百位..
			for(int j = 0; j < arr.length; j++) {
				//取出每个元素的对应位的值 
				int digitOfElement = arr[j] / n % 10;
				//放入到对应的桶中
				bucket[digitOfElement][bucketElementCounts[digitOfElement]] = arr[j];
				bucketElementCounts[digitOfElement]++;
			}
			//按照这个桶的顺序(一维数组的下标依次取出数据,放入原来数组)
			int index = 0;
			//遍历每一桶,并将桶中是数据,放入到原数组
			for(int k = 0; k < bucketElementCounts.length; k++) {
				//如果桶中,有数据,我们才放入到原数组
				if(bucketElementCounts[k] != 0) {
					//循环该桶即第k个桶(即第k个一维数组), 放入
					for(int l = 0; l < bucketElementCounts[k]; l++) {
						//取出元素放入到arr
						arr[index++] = bucket[k][l];
					}
				}
				//第i+1轮处理后,需要将每个 bucketElementCounts[k] = 0 !!!! 

				bucketElementCounts[k] = 0;
				
			}
			//System.out.println("第"+(i+1)+"轮,对个位的排序处理 arr =" + Arrays.toString(arr));
			
		}
		
		/*
		
		//第1轮(针对每个元素的个位进行排序处理)
		for(int j = 0; j < arr.length; j++) {
			//取出每个元素的个位的值
			int digitOfElement = arr[j] / 1 % 10;
			//放入到对应的桶中
			bucket[digitOfElement][bucketElementCounts[digitOfElement]] = arr[j];
			bucketElementCounts[digitOfElement]++;
		}
		//按照这个桶的顺序(一维数组的下标依次取出数据,放入原来数组)
		int index = 0;
		//遍历每一桶,并将桶中是数据,放入到原数组
		for(int k = 0; k < bucketElementCounts.length; k++) {
			//如果桶中,有数据,我们才放入到原数组
			if(bucketElementCounts[k] != 0) {
				//循环该桶即第k个桶(即第k个一维数组), 放入
				for(int l = 0; l < bucketElementCounts[k]; l++) {
					//取出元素放入到arr
					arr[index++] = bucket[k][l];
				}
			}
			//第l轮处理后,需要将每个 bucketElementCounts[k] = 0 !!!!
			bucketElementCounts[k] = 0;
			
		}
		System.out.println("第1轮,对个位的排序处理 arr =" + Arrays.toString(arr));
		
		
		//==========================================
		
		//第2轮(针对每个元素的十位进行排序处理)
		for (int j = 0; j < arr.length; j++) {
			// 取出每个元素的十位的值
			int digitOfElement = arr[j] / 10  % 10; //748 / 10 => 74 % 10 => 4
			// 放入到对应的桶中
			bucket[digitOfElement][bucketElementCounts[digitOfElement]] = arr[j];
			bucketElementCounts[digitOfElement]++;
		}
		// 按照这个桶的顺序(一维数组的下标依次取出数据,放入原来数组)
		index = 0;
		// 遍历每一桶,并将桶中是数据,放入到原数组
		for (int k = 0; k < bucketElementCounts.length; k++) {
			// 如果桶中,有数据,我们才放入到原数组
			if (bucketElementCounts[k] != 0) {
				// 循环该桶即第k个桶(即第k个一维数组), 放入
				for (int l = 0; l < bucketElementCounts[k]; l++) {
					// 取出元素放入到arr
					arr[index++] = bucket[k][l];
				}
			}
			//第2轮处理后,需要将每个 bucketElementCounts[k] = 0 !!!!
			bucketElementCounts[k] = 0;
		}
		System.out.println("第2轮,对个位的排序处理 arr =" + Arrays.toString(arr));
		
		
		//第3轮(针对每个元素的百位进行排序处理)
		for (int j = 0; j < arr.length; j++) {
			// 取出每个元素的百位的值
			int digitOfElement = arr[j] / 100 % 10; // 748 / 100 => 7 % 10 = 7
			// 放入到对应的桶中
			bucket[digitOfElement][bucketElementCounts[digitOfElement]] = arr[j];
			bucketElementCounts[digitOfElement]++;
		}
		// 按照这个桶的顺序(一维数组的下标依次取出数据,放入原来数组)
		index = 0;
		// 遍历每一桶,并将桶中是数据,放入到原数组
		for (int k = 0; k < bucketElementCounts.length; k++) {
			// 如果桶中,有数据,我们才放入到原数组
			if (bucketElementCounts[k] != 0) {
				// 循环该桶即第k个桶(即第k个一维数组), 放入
				for (int l = 0; l < bucketElementCounts[k]; l++) {
					// 取出元素放入到arr
					arr[index++] = bucket[k][l];
				}
			}
			//第3轮处理后,需要将每个 bucketElementCounts[k] = 0 !!!!
			bucketElementCounts[k] = 0;
		}
		System.out.println("第3轮,对个位的排序处理 arr =" + Arrays.toString(arr)); */
		
	}
}

基数排序的说明:

  1. 基数排序是对传统桶排序的扩展,速度很快.
  2. 基数排序是==经典的空间换时间的方式==,占用内存很大, 当对海量数据排序时,容易造成 OutOfMemoryError 。
  3. 基数排序时稳定的。[注:假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,这些记录的相对次序保持不变,即在原序列中,r[i]=r[j],且r[i]在r[j]之前,而在排序后的序列中,r[i]仍在r[j]之前,则称这种排序算法是稳定的;否则称为不稳定的]
  4. 有负数的数组,我们不用基数排序来进行排序, 如果要支持负数,参考: https://code.i-harness.com/zh-CN/q/e98fa9
    负数会得到负数的桶,下标越界
    如果要用到负数,思路就是取绝对值

问题

  1. 空间问题
    8000000的时候消耗很多的内存空间
    80000000 * 11 * 4 / 1024 / 1024 / 1024 =3.3G
  2. a[i]++是什么
    a[0]++等同于a[0]=a[0]+1

你可能感兴趣的:(Java数据结构和算法,数据结构,java,排序算法,算法,排序)