sharding-jdbc系列之 数据源配置(一)

原文链接

https://blog.csdn.net/u012394095/article/details/81301034

spring boot Yaml方式

@Bean(name = "testDataSource")
public DataSource testDataSource() throws IOException {
        String yml = "jdbc/testDataSource.yaml";
        Resource certResource = new ClassPathResource(yml);
        DataSource dataSource = null;
        try (InputStream is = certResource.getInputStream()) {
            byte[] bytes = input2byte(is);
            dataSource = new YmlByteArrayDataSource("testDataSource", bytes);
        }
        return dataSource;
}

定义一个Config类,配置数据源,上面的代码很简单,无非就是获取yaml文件,然后通过YmlByteArrayDataSource创建一个dataSource

public class YmlByteArrayDataSource extends ShardingDataSource {

    public YmlByteArrayDataSource(String logroot, final byte[] ymlByteArray) throws IOException{
        super(new ShardingRuleBuilder(logroot, unmarshal(ymlByteArray)).build(),                                        unmarshal(ymlByteArray).getProps());
    }

    private static YamlConfig unmarshal(final byte[] ymlByteArray) throws IOException {
        return new Yaml(new Constructor(YamlConfig.class)).loadAs(new                                                     ByteArrayInputStream(ymlByteArray), YamlConfig.class);
    }
}

YmlByteArrayDataSource继承了ShardingDataSource,调用了super方法,创建一个dataSource,

YamlConfig继承了ShardingRuleConfig , 因此unmarshal方法就是读取yaml文件,然后构建一个ShardingRuleConfig 对象用来创建ShardingDataSource

yaml配置如下

dataSource:
  ds_0: !!org.apache.commons.dbcp.BasicDataSource  # 数据源连接池类型。 
    driverClassName: com.mysql.jdbc.Driver   # 数据库驱动
    url: jdbc:mysql://localhost:3306/ds_yaml_0   # 地址
    username: root    # 用户名
    password:           # 密码
  ds_1: !!org.apache.commons.dbcp.BasicDataSource
    driverClassName: com.mysql.jdbc.Driver
    url: jdbc:mysql://localhost:3306/ds_yaml_1
    username: root
    password: 

tables:    # 分表规则
  t_order:     # 表的别称,用来写SQL,sharding-jdbc会用这个来查找真实的数据库表
    actualTables: t_order_${0..1}   # 真实的数据库表 
    tableStrategy:   # 分表策略
      shardingColumns: order_id   # 分片ID
      algorithmExpression: t_order_${order_id.longValue() % 2}  # 分片策略
        
  t_order_item:  # 和t_order的一样的意义
    actualTables: t_order_item_${0..1}
    #绑定表中其余的表的策略与第一张表的策略相同
    tableStrategy: 
      shardingColumns: order_id
      algorithmExpression: t_order_item_${order_id.longValue() % 2}  

bindingTables:
  - tableNames: t_order,t_order_item
  
#默认数据库分片策略 
defaultDatabaseStrategy:
  shardingColumns: user_id   # 使用user_id 来分库
  algorithmExpression: ds_${user_id.longValue() % 2}

props:
  sql.show: false  # 是否显示SQL

上面的yaml配置一一对应ShardingRuleConfig里面的属性 .。

public class ShardingRuleConfig {
    private Map dataSource = new HashMap();
    private String defaultDataSourceName;
    private Map tables = new HashMap();
    private List bindingTables = new ArrayList();
    private StrategyConfig defaultDatabaseStrategy;
    private StrategyConfig defaultTableStrategy;
    private String keyGeneratorClass;
}

spring boot 硬编码配置数据源

private static ShardingDataSource getShardingDataSource() throws SQLException {
    // 构造DataSourceRule,即key与数据源的KV对;
    DataSourceRule dataSourceRule = new DataSourceRule(createDataSourceMap());
    // 建立逻辑表是t_order,实际表是t_order_0,t_order_1的TableRule
    TableRule orderTableRule = TableRule.builder("t_order").
                 actualTables(Arrays.asList("t_order_0",                                                           "t_order_1")).dataSourceRule(dataSourceRule).build();
    // 建立逻辑表是t_order_item,实际表是t_order_item_0,t_order_item_1的TableRule
    TableRule orderItemTableRule = TableRule.builder("t_order_item").
    actualTables(Arrays.asList("t_order_item_0", "t_order_item_1")).
                    dataSourceRule(dataSourceRule).build();
    ShardingRule shardingRule = ShardingRule.builder()
                .dataSourceRule(dataSourceRule)
                .tableRules(Arrays.asList(orderTableRule, orderItemTableRule))
                // 增加绑定表--绑定表代表一组表,这组表的逻辑表与实际表之
                // 间的映射关系是相同的。比如t_order与t_order_item就是这样一组绑定表关系,它们的分库与                 // 分表策略是完全相同的,那么可以使用它们的表规则将它们配置成绑定表,
                // 绑定表所有路由计算将会只使用主表的策略;
                .bindingTableRules(Collections.singletonList(new BindingTableRule(Arrays.asList(orderTableRule, orderItemTableRule))))
                // 指定数据库sharding策略--根据user_id字段的值取模
                .databaseShardingStrategy(new DatabaseShardingStrategy("user_id", new ModuloDatabaseShardingAlgorithm()))
                // 指定表sharding策略--根据order_id字段的值取模
                .tableShardingStrategy(new TableShardingStrategy("order_id", new ModuloTableShardingAlgorithm())).build();
    return new ShardingDataSource(shardingRule);
}

// 创建两个数据源,一个是ds_jdbc_0,一个是ds_jdbc_1,并绑定映射关系key
private static Map createDataSourceMap() {
    Map result = new HashMap<>(2);
    result.put("ds_jdbc_0", createDataSource("ds_jdbc_0"));
    result.put("ds_jdbc_1", createDataSource("ds_jdbc_1"));
    return result;
}

// 以dbcp组件创建一个数据源
private static DataSource createDataSource(final String dataSourceName) {
    BasicDataSource result = new BasicDataSource();
    result.setDriverClassName(com.mysql.jdbc.Driver.class.getName());
    result.setUrl(String.format("jdbc:mysql://localhost:3306/%s", dataSourceName));
    result.setUsername("root");
    // sharding-jdbc默认以密码为空的root用户访问,如果修改了root用户的密码,这里修改为真实的密码即可;
    result.setPassword("");
    return result;
}

spring xml 方式

   
   
        
        
        
        
    
    
    
        
        
        
        
    
    
    
    
    
    
    
        
        
            
            
                
                    
                
            
        
    
    
    
        
    
    

你可能感兴趣的:(sharding-jdbc系列之 数据源配置(一))