iOS底层-objc_msgSend 慢速查找流程分析

慢速查找-汇编部分

在objc-msg-arm64.s文件中查找__objc_msgSend_uncached的汇编实现,其中的核心是MethodTableLookup(即查询方法列表),其源码如下

.macro MethodTableLookup

// push frame

SignLR

stp fp, lr, [sp,#-16]!

mov fp, sp

// save parameter registers: x0..x8, q0..q7

sub sp, sp,#(10*8 + 8*16)

stp q0, q1, [sp,#(0*16)]

stp q2, q3, [sp,#(2*16)]

stp q4, q5, [sp,#(4*16)]

stp q6, q7, [sp,#(6*16)]

stp x0, x1, [sp,#(8*16+0*8)]

stp x2, x3, [sp,#(8*16+2*8)]

stp x4, x5, [sp,#(8*16+4*8)]

stp x6, x7, [sp,#(8*16+6*8)]

str x8,    [sp,#(8*16+8*8)]

// lookUpImpOrForward(obj, sel, cls, LOOKUP_INITIALIZE | LOOKUP_RESOLVER)

// receiver and selector already in x0 and x1

mov x2, x16

mov x3,#3

bl _lookUpImpOrForward

// IMP in x0

mov x17, x0

// restore registers and return

ldp q0, q1, [sp,#(0*16)]

ldp q2, q3, [sp,#(2*16)]

ldp q4, q5, [sp,#(4*16)]

ldp q6, q7, [sp,#(6*16)]

ldp x0, x1, [sp,#(8*16+0*8)]

ldp x2, x3, [sp,#(8*16+2*8)]

ldp x4, x5, [sp,#(8*16+4*8)]

ldp x6, x7, [sp,#(8*16+6*8)]

ldr x8,    [sp,#(8*16+8*8)]

mov sp, fp

ldp fp, lr, [sp],#16

AuthenticateLR

.endmacro

其中的核心是_lookUpImpOrForward,上述汇编的过程,可以通过汇编调试来验证

在main中,例如[person sayHello]对象方法调用处加一个断点,并且开启汇编调试【Debug -- Debug worlflow -- 勾选Always show Disassembly】,运行程序

图1

汇编中objc_msgSend加一个断点,执行断住,按住control + stepinto,进入objc_msgSend的汇编:

图2

在_objc_msgSend_uncached加一个断点,执行断住,按住control + stepinto,进入汇编

图3

慢速查找-C/C++部分

根据汇编部分的提示,全局续搜索lookUpImpOrForward,最后在objc-runtime-new.mm文件中找到了源码实现,这是一个c实现的函数

IM PlookUpImpOrForward(id inst,SEL sel,Class cls,int behavior)

{

    const IMP forward_imp = (IMP)_objc_msgForward_impcache;

    IMP imp =nil;

    ClasscurClass;

    runtimeLock.assertUnlocked();

    // Optimistic cache lookup

    if(fastpath(behavior &LOOKUP_CACHE)) {

        imp =cache_getImp(cls, sel);

        if(imp)gotodone_nolock;

    }

    // runtimeLock is held during isRealized and isInitialized checking

    // to prevent races against concurrent realization.

    // runtimeLock is held during method search to make

    // method-lookup + cache-fill atomic with respect to method addition.

    // Otherwise, a category could be added but ignored indefinitely because

    // the cache was re-filled with the old value after the cache flush on

    // behalf of the category.

    runtimeLock.lock();

    // We don't want people to be able to craft a binary blob that looks like

    // a class but really isn't one and do a CFI attack.

    //

    // To make these harder we want to make sure this is a class that was

    // either built into the binary or legitimately registered through

    // objc_duplicateClass, objc_initializeClassPair or objc_allocateClassPair.

    //

    // TODO: this check is quite costly during process startup.

    checkIsKnownClass(cls);

    if(slowpath(!cls->isRealized())) {

        cls =realizeClassMaybeSwiftAndLeaveLocked(cls, runtimeLock);

        // runtimeLock may have been dropped but is now locked again

    }

    if(slowpath((behavior &LOOKUP_INITIALIZE) && !cls->isInitialized())) {

        cls =initializeAndLeaveLocked(cls, inst, runtimeLock);

        // runtimeLock may have been dropped but is now locked again

        // If sel == initialize, class_initialize will send +initialize and 

        // then the messenger will send +initialize again after this 

        // procedure finishes. Of course, if this is not being called 

        // from the messenger then it won't happen. 2778172

    }

    runtimeLock.assertLocked();

    curClass = cls;

    // The code used to lookpu the class's cache again right after

    // we take the lock but for the vast majority of the cases

    // evidence shows this is a miss most of the time, hence a time loss.

    //

    // The only codepath calling into this without having performed some

    // kind of cache lookup is class_getInstanceMethod().

    for(unsignedattempts =unreasonableClassCount();;) {

        // curClass method list.

        Methodmeth =getMethodNoSuper_nolock(curClass, sel);

        if(meth) {

            imp = meth->imp;

            gotodone;

        }

        if(slowpath((curClass = curClass->superclass) ==nil)) {

            // No implementation found, and method resolver didn't help.

            // Use forwarding.

            imp = forward_imp;

            break;

        }

        // Halt if there is a cycle in the superclass chain.

        if(slowpath(--attempts ==0)) {

            _objc_fatal("Memory corruption in class list.");

        }

        // Superclass cache.

        imp =cache_getImp(curClass, sel);

        if(slowpath(imp == forward_imp)) {

            // Found a forward:: entry in a superclass.

            // Stop searching, but don't cache yet; call method

            // resolver for this class first.

            break;

        }

        if(fastpath(imp)) {

            // Found the method in a superclass. Cache it in this class.

            gotodone;

        }

    }

    // No implementation found. Try method resolver once.

    if(slowpath(behavior &LOOKUP_RESOLVER)) {

        behavior ^=LOOKUP_RESOLVER;

        returnresolveMethod_locked(inst, sel, cls, behavior);

    }

 done:

    log_and_fill_cache(cls, imp, sel, inst, curClass);

    runtimeLock.unlock();

 done_nolock:

    if(slowpath((behavior &LOOKUP_NIL) && imp == forward_imp)) {

        returnnil;

    }

    returnimp;

}

其整体的慢速查找流程如图所示:

主要有以下几步:

1.cache缓存中进行查找,即快速查找,找到则直接返回imp,反之,则进入第2步

2.判断cls是否是已知类,如果不是,则报错;类是否实现,如果没有,则需要先实现,确定其父类链,此时实例化的目的是为了确定父类链,方法后续的循环,是否初始化,如果没有,则初始化

3.for循环,按照类继承链 或者 元类继承链的顺序查找

当前cls的方法列表中使用二分查找算法查找方法,如果找到,则进入cache写入流程并返回imp,如果没有找到,则返回nil当前cls被赋值为父类,如果父类等于nil,则imp = 消息转发,并终止递归,进入第4步

如果父类链中存在循环,则报错,终止循环

父类缓存中查找方法

如果未找到,则直接返回nil,继续循环查找

如果找到,则直接返回imp,执行cache写入流程

4.判断是否执行过动态方法解析

,如果没有,执行动态方法解析

如果执行过一次动态方法解析,则走到消息转发流程

getMethodNoSuper_nolock方法:二分查找方法列表

查找方法列表的流程如下所示:

其二分查找核心的源码实现如下:

ALWAYS_INLINE static method_t *

findMethodInSortedMethodList(SEL key, const method_list_t *list)

{

    ASSERT(list);

    const method_t * const first = &list->first;

    const method_t *base = first;

    const method_t *probe;

    uintptr_t keyValue = (uintptr_t)key; //key 等于 say666

    uint32_t count;

    //base相当于low,count是max,probe是middle,这就是二分

    for (count = list->count; count != 0; count >>= 1) {

        //从首地址+下标 --> 移动到中间位置(count >> 1 左移1位即 count/2 = 4)

        probe = base + (count >> 1);


        uintptr_t probeValue = (uintptr_t)probe->name;


        //如果查找的key的keyvalue等于中间位置(probe)的probeValue,则直接返回中间位置

        if (keyValue == probeValue) {

            // -- while 平移 -- 排除分类重名方法

            while (probe > first && keyValue == (uintptr_t)probe[-1].name) {

                //排除分类重名方法(方法的存储是先存储类方法,在存储分类---按照先进后出的原则,分类方法最先出,而我们要取的类方法,所以需要先排除分类方法)

                //如果是两个分类,就看谁先进行加载

                probe--;

            }

            return (method_t *)probe;

        }


        //如果keyValue 大于 probeValue,就往probe即中间位置的右边查找

        if (keyValue > probeValue) {

            base = probe + 1;

            count--;

        }

    }

    return nil;

}

算法原理简述为:从第一次查找开始,每次都取中间位置,与想查找的key的value值作比较,如果相等,则需要排除分类方法,然后将查询到的位置的方法实现返回,如果不相等,则需要继续二分查找,如果循环至count = 0还是没有找到,则直接返回nil,如下所示:

二分查找方法列表原理

以查找LGPerson类的say666实例方法为例,其二分查找过程如下

举例说明二分查找过程

cache_getImp方法:父类缓存查找

cache_getImp方法是通过汇编_cache_getImp实现,传入的$0 是 GETIMP,如下所示:

父类缓存查找流程

如果父类缓存中找到了方法实现,则跳转至CacheHit即命中,则直接返回imp

如果在父类缓存中,没有找到方法实现,则跳转至CheckMiss或者JumpMiss,通过判断$0跳转至LGetImpMiss,直接返回nil

总结

对于对象方法(即实例方法),即在类中查找,其慢速查找的父类链是:类--父类--根类--nil

对于类方法,即在元类中查找,其慢速查找的父类链是:元类--根元类--根类--nil

你可能感兴趣的:(iOS底层-objc_msgSend 慢速查找流程分析)