数据结构(八)两种方式实现map

数据结构(一)数组实现一个简单的ArrayList
数据结构(二)链表实现LinkedList
数据结构(三)用两种方式简单实现栈
数据结构(四)栈和队列的简单应用
数据结构(五)用两种方式简单实现队列
数据结构(六)二分搜索树(Binary Search Tree)(上)
数据结构(六)二分搜索树(Binary Search Tree)(下)
数据结构(七)两种方式实现set
数据结构(八)两种方式实现map
数据结构(九)set解决LeetCode349号问题

今天我们来实现一下map,总共有两种方式,第一种是二分搜索树实现map,第二种方式链表实现map。
话不多说直接上源码。

public class BSTMap, V> implements Map {

    private class Node{
        public K key;
        public V value;
        public Node left, right;

        public Node(K key, V value){
            this.key = key;
            this.value = value;
            left = null;
            right = null;
        }
    }

    private Node root;
    private int size;

    public BSTMap(){
        root = null;
        size = 0;
    }

    @Override
    public int getSize(){
        return size;
    }

    @Override
    public boolean isEmpty(){
        return size == 0;
    }

    // 向二分搜索树中添加新的元素(key, value)
    @Override
    public void add(K key, V value){
        root = add(root, key, value);
    }

    // 向以node为根的二分搜索树中插入元素(key, value),递归算法
    // 返回插入新节点后二分搜索树的根
    private Node add(Node node, K key, V value){

        if(node == null){
            size ++;
            return new Node(key, value);
        }

        if(key.compareTo(node.key) < 0)
            node.left = add(node.left, key, value);
        else if(key.compareTo(node.key) > 0)
            node.right = add(node.right, key, value);
        else // key.compareTo(node.key) == 0
            node.value = value;

        return node;
    }

    // 返回以node为根节点的二分搜索树中,key所在的节点
    private Node getNode(Node node, K key){

        if(node == null)
            return null;

        if(key.equals(node.key))
            return node;
        else if(key.compareTo(node.key) < 0)
            return getNode(node.left, key);
        else // if(key.compareTo(node.key) > 0)
            return getNode(node.right, key);
    }

    @Override
    public boolean contains(K key){
        return getNode(root, key) != null;
    }

    @Override
    public V get(K key){

        Node node = getNode(root, key);
        return node == null ? null : node.value;
    }

    @Override
    public void set(K key, V newValue){
        Node node = getNode(root, key);
        if(node == null)
            throw new IllegalArgumentException(key + " doesn't exist!");

        node.value = newValue;
    }

    // 返回以node为根的二分搜索树的最小值所在的节点
    private Node minimum(Node node){
        if(node.left == null)
            return node;
        return minimum(node.left);
    }

    // 删除掉以node为根的二分搜索树中的最小节点
    // 返回删除节点后新的二分搜索树的根
    private Node removeMin(Node node){

        if(node.left == null){
            Node rightNode = node.right;
            node.right = null;
            size --;
            return rightNode;
        }

        node.left = removeMin(node.left);
        return node;
    }

    // 从二分搜索树中删除键为key的节点
    @Override
    public V remove(K key){

        Node node = getNode(root, key);
        if(node != null){
            root = remove(root, key);
            return node.value;
        }
        return null;
    }

    private Node remove(Node node, K key){

        if( node == null )
            return null;

        if( key.compareTo(node.key) < 0 ){
            node.left = remove(node.left , key);
            return node;
        }
        else if(key.compareTo(node.key) > 0 ){
            node.right = remove(node.right, key);
            return node;
        }
        else{   // key.compareTo(node.key) == 0

            // 待删除节点左子树为空的情况
            if(node.left == null){
                Node rightNode = node.right;
                node.right = null;
                size --;
                return rightNode;
            }

            // 待删除节点右子树为空的情况
            if(node.right == null){
                Node leftNode = node.left;
                node.left = null;
                size --;
                return leftNode;
            }

            // 待删除节点左右子树均不为空的情况

            // 找到比待删除节点大的最小节点, 即待删除节点右子树的最小节点
            // 用这个节点顶替待删除节点的位置
            Node successor = minimum(node.right);
            successor.right = removeMin(node.right);
            successor.left = node.left;

            node.left = node.right = null;

            return successor;
        }
    }

    public static void main(String[] args){

        System.out.println("Pride and Prejudice");

        ArrayList words = new ArrayList<>();
        if(FileOperation.readFile("pride-and-prejudice.txt", words)) {
            System.out.println("Total words: " + words.size());

            BSTMap map = new BSTMap<>();
            for (String word : words) {
                if (map.contains(word))
                    map.set(word, map.get(word) + 1);
                else
                    map.add(word, 1);
            }

            System.out.println("Total different words: " + map.getSize());
            System.out.println("Frequency of PRIDE: " + map.get("pride"));
            System.out.println("Frequency of PREJUDICE: " + map.get("prejudice"));
        }

        System.out.println();
    }
}
  • add方法
    这个node与之前链表的node有点不太一样,这里多了一个value,指针变成了left和right。这个add方法我们用递归的方式实现的,当这个节点是空的时候我们就创建一个节点,如果这个节点不是空的:先比较可以与当前节点的元素,如果比当前节点的元素小则去这个节点的左子树去处理;如果比当前节点的元素大,那么就去这个节点的右子树去遍历,如果相等那么就把值赋给这个节点。
  • getNode
    获取方法,获取值为key的节点元素的value。这里也是递归的方式实现的,首先如果这个节点是空的,就返回null,然后比较这个节点的值与传入的key,如果相等,就返回当前的节点,如果比这个节点小那么就去这个节点的左子树去遍历,如果比这个节点的值大就去这个节点的右子树去遍历。
public class LinkedListMap implements Map {

    private class Node{
        public K key;
        public V value;
        public Node next;

        public Node(K key, V value, Node next){
            this.key = key;
            this.value = value;
            this.next = next;
        }

        public Node(K key, V value){
            this(key, value, null);
        }

        public Node(){
            this(null, null, null);
        }

        @Override
        public String toString(){
            return key.toString() + " : " + value.toString();
        }
    }

    private Node dummyHead;
    private int size;

    public LinkedListMap(){
        dummyHead = new Node();
        size = 0;
    }

    @Override
    public int getSize(){
        return size;
    }

    @Override
    public boolean isEmpty(){
        return size == 0;
    }

    private Node getNode(K key){
        Node cur = dummyHead.next;
        while(cur != null){
            if(cur.key.equals(key))
                return cur;
            cur = cur.next;
        }
        return null;
    }

    @Override
    public boolean contains(K key){
        return getNode(key) != null;
    }

    @Override
    public V get(K key){
        Node node = getNode(key);
        return node == null ? null : node.value;
    }

    @Override
    public void add(K key, V value){
        Node node = getNode(key);
        if(node == null){
            dummyHead.next = new Node(key, value, dummyHead.next);
            size ++;
        }
        else
            node.value = value;
    }

    @Override
    public void set(K key, V newValue){
        Node node = getNode(key);
        if(node == null)
            throw new IllegalArgumentException(key + " doesn't exist!");

        node.value = newValue;
    }

    @Override
    public V remove(K key){

        Node prev = dummyHead;
        while(prev.next != null){
            if(prev.next.key.equals(key))
                break;
            prev = prev.next;
        }

        if(prev.next != null){
            Node delNode = prev.next;
            prev.next = delNode.next;
            delNode.next = null;
            size --;
            return delNode.value;
        }

        return null;
    }

    public static void main(String[] args){

        System.out.println("Pride and Prejudice");

        ArrayList words = new ArrayList<>();
        if(FileOperation.readFile("pride-and-prejudice.txt", words)) {
            System.out.println("Total words: " + words.size());

            LinkedListMap map = new LinkedListMap<>();
            for (String word : words) {
                if (map.contains(word))
                    map.set(word, map.get(word) + 1);
                else
                    map.add(word, 1);
            }

            System.out.println("Total different words: " + map.getSize());
            System.out.println("Frequency of PRIDE: " + map.get("pride"));
            System.out.println("Frequency of PREJUDICE: " + map.get("prejudice"));
        }

        System.out.println();
    }
}

更多精彩请关注公众号及时接收

公众号

你可能感兴趣的:(数据结构(八)两种方式实现map)