很多人都知道,Linus在1991年创建了开源的Linux,从此,Linux系统不断发展,已经成为最大的服务器系统软件了。
Linus虽然创建了Linux,但Linux的壮大是靠全世界热心的志愿者参与的,这么多人在世界各地为Linux编写代码,那Linux的代码是如何管理的呢?
事实是,在2002年以前,世界各地的志愿者把源代码文件通过diff的方式发给Linus,然后由Linus本人通过手工方式合并代码!
你也许会想,为什么Linus不把Linux代码放到版本控制系统里呢?不是有CVS、SVN这些免费的版本控制系统吗?因为Linus坚定地反对CVS和SVN,这些集中式的版本控制系统不但速度慢,而且必须联网才能使用。有一些商用的版本控制系统,虽然比CVS、SVN好用,但那是付费的,和Linux的开源精神不符。
不过,到了2002年,Linux系统已经发展了十年了,代码库之大让Linus很难继续通过手工方式管理了,社区的弟兄们也对这种方式表达了强烈不满,于是Linus选择了一个商业的版本控制系统BitKeeper,BitKeeper的东家BitMover公司出于人道主义精神,授权Linux社区免费使用这个版本控制系统。
安定团结的大好局面在2005年就被打破了,原因是Linux社区牛人聚集,不免沾染了一些梁山好汉的江湖习气。开发Samba的Andrew试图破解BitKeeper的协议(这么干的其实也不只他一个),被BitMover公司发现了(监控工作做得不错!),于是BitMover公司怒了,要收回Linux社区的免费使用权。
Linus可以向BitMover公司道个歉,保证以后严格管教弟兄们,嗯,这是不可能的。实际情况是这样的:
Linus花了两周时间自己用C写了一个分布式版本控制系统,这就是Git!一个月之内,Linux系统的源码已经由Git管理了!牛是怎么定义的呢?大家可以体会一下。
Git迅速成为最流行的分布式版本控制系统,尤其是2008年,GitHub网站上线了,它为开源项目免费提供Git存储,无数开源项目开始迁移至GitHub,包括jQuery,PHP,Ruby等等。
历史就是这么偶然,如果不是当年BitMover公司威胁Linux社区,可能现在我们就没有免费而超级好用的Git了。
inus一直痛恨的CVS及SVN都是集中式的版本控制系统,而Git是分布式版本控制系统,集中式和分布式版本控制系统有什么区别呢?
先说集中式版本控制系统,版本库是集中存放在中央服务器的,而干活的时候,用的都是自己的电脑,所以要先从中央服务器取得最新的版本,然后开始干活,干完活了,再把自己的活推送给中央服务器。中央服务器就好比是一个图书馆,你要改一本书,必须先从图书馆借出来,然后回到家自己改,改完了,再放回图书馆。
集中式版本控制系统最大的毛病就是必须联网才能工作,如果在局域网内还好,带宽够大,速度够快,可如果在互联网上,遇到网速慢的话,可能提交一个10M的文件就需要5分钟,这还不得把人给憋死啊。
那分布式版本控制系统与集中式版本控制系统有何不同呢?首先,分布式版本控制系统根本没有“中央服务器”,每个人的电脑上都是一个完整的版本库,这样,你工作的时候,就不需要联网了,因为版本库就在你自己的电脑上。既然每个人电脑上都有一个完整的版本库,那多个人如何协作呢?比方说你在自己电脑上改了文件A,你的同事也在他的电脑上改了文件A,这时,你们俩之间只需把各自的修改推送给对方,就可以互相看到对方的修改了。
和集中式版本控制系统相比,分布式版本控制系统的安全性要高很多,因为每个人电脑里都有完整的版本库,某一个人的电脑坏掉了不要紧,随便从其他人那里复制一个就可以了。而集中式版本控制系统的中央服务器要是出了问题,所有人都没法干活了。
在实际使用分布式版本控制系统的时候,其实很少在两人之间的电脑上推送版本库的修改,因为可能你们俩不在一个局域网内,两台电脑互相访问不了,也可能今天你的同事病了,他的电脑压根没有开机。因此,分布式版本控制系统通常也有一台充当“中央服务器”的电脑,但这个服务器的作用仅仅是用来方便“交换”大家的修改,没有它大家也一样干活,只是交换修改不方便而已。
当然,Git的优势不单是不必联网这么简单,后面我们还会看到Git极其强大的分支管理,把SVN等远远抛在了后面。
CVS作为最早的开源而且免费的集中式版本控制系统,直到现在还有不少人在用。由于CVS自身设计的问题,会造成提交文件不完整,版本库莫名其妙损坏的情况。同样是开源而且免费的SVN修正了CVS的一些稳定性问题,是目前用得最多的集中式版本库控制系统。
除了免费的外,还有收费的集中式版本控制系统,比如IBM的ClearCase(以前是Rational公司的,被IBM收购了),特点是安装比Windows还大,运行比蜗牛还慢,能用ClearCase的一般是世界500强,他们有个共同的特点是财大气粗,或者人傻钱多。
微软自己也有一个集中式版本控制系统叫VSS,集成在Visual Studio中。由于其反人类的设计,连微软自己都不好意思用了。
分布式版本控制系统除了Git以及促使Git诞生的BitKeeper外,还有类似Git的Mercurial和Bazaar等。这些分布式版本控制系统各有特点,但最快、最简单也最流行的依然是Git!
最早Git是在Linux上开发的,很长一段时间内,Git也只能在Linux和Unix系统上跑。不过,慢慢地有人把它移植到了Windows上。现在,Git可以在Linux、Unix、Mac和Windows这几大平台上正常运行了。
要使用Git,第一步当然是安装Git了。根据你当前使用的平台来阅读下面的文字:
首先,你可以试着输入git
,看看系统有没有安装Git:
$ git
The program 'git' is currently not installed. You can install it by typing:
sudo apt-get install git
像上面的命令,有很多Linux会友好地告诉你Git没有安装,还会告诉你如何安装Git。
如果你碰巧用Debian或Ubuntu Linux,通过一条sudo apt-get install git
就可以直接完成Git的安装,非常简单。
老一点的Debian或Ubuntu Linux,要把命令改为sudo apt-get install git-core
,因为以前有个软件也叫GIT(GNU Interactive Tools),结果Git就只能叫git-core
了。由于Git名气实在太大,后来就把GNU Interactive Tools改成gnuit
,git-core
正式改为git
。
如果是其他Linux版本,可以直接通过源码安装。先从Git官网下载源码,然后解压,依次输入:./config
,make
,sudo make install
这几个命令安装就好了。
如果你正在使用Mac做开发,有两种安装Git的方法。
一是安装homebrew,然后通过homebrew安装Git,具体方法请参考homebrew的文档:Homebrew — The Missing Package Manager for macOS (or Linux)。
第二种方法更简单,也是推荐的方法,就是直接从AppStore安装Xcode,Xcode集成了Git,不过默认没有安装,你需要运行Xcode,选择菜单“Xcode”->“Preferences”,在弹出窗口中找到“Downloads”,选择“Command Line Tools”,点“Install”就可以完成安装了。
Xcode是Apple官方IDE,功能非常强大,是开发Mac和iOS App的必选装备,而且是免费的!
在Windows上使用Git,可以从Git官网直接下载安装程序,然后按默认选项安装即可。
安装完成后,在开始菜单里找到“Git”->“Git Bash”,蹦出一个类似命令行窗口的东西,就说明Git安装成功!
安装完成后,还需要最后一步设置,在命令行输入:
$ git config --global user.name "Your Name"
$ git config --global user.email "[email protected]"
因为Git是分布式版本控制系统,所以,每个机器都必须自报家门:你的名字和Email地址。你也许会担心,如果有人故意冒充别人怎么办?这个不必担心,首先我们相信大家都是善良无知的群众,其次,真的有冒充的也是有办法可查的。
注意git config
命令的--global
参数,用了这个参数,表示你这台机器上所有的Git仓库都会使用这个配置,当然也可以对某个仓库指定不同的用户名和Email地址。
什么是版本库呢?版本库又名仓库,英文名repository,你可以简单理解成一个目录,这个目录里面的所有文件都可以被Git管理起来,每个文件的修改、删除,Git都能跟踪,以便任何时刻都可以追踪历史,或者在将来某个时刻可以“还原”。
所以,创建一个版本库非常简单,首先,选择一个合适的地方,创建一个空目录:
$ mkdir learngit
$ cd learngit
$ pwd
/Users/michael/learngit
pwd
命令用于显示当前目录。在我的Mac上,这个仓库位于/Users/michael/learngit
。
如果你使用Windows系统,为了避免遇到各种莫名其妙的问题,请确保目录名(包括父目录)不包含中文。
第二步,通过git init
命令把这个目录变成Git可以管理的仓库:
git init
瞬间Git就把仓库建好了,而且告诉你是一个空的仓库(empty Git repository),细心的读者可以发现当前目录下多了一个.git
的目录,这个目录是Git来跟踪管理版本库的,没事千万不要手动修改这个目录里面的文件,不然改乱了,就把Git仓库给破坏了。
如果你没有看到.git
目录,那是因为这个目录默认是隐藏的,用ls -ah
命令就可以看见。
也不一定必须在空目录下创建Git仓库,选择一个已经有东西的目录也是可以的。不过,不建议你使用自己正在开发的公司项目来学习Git,否则造成的一切后果概不负责。
首先这里再明确一下,所有的版本控制系统,其实只能跟踪文本文件的改动,比如TXT文件,网页,所有的程序代码等等,Git也不例外。版本控制系统可以告诉你每次的改动,比如在第5行加了一个单词“Linux”,在第8行删了一个单词“Windows”。而图片、视频这些二进制文件,虽然也能由版本控制系统管理,但没法跟踪文件的变化,只能把二进制文件每次改动串起来,也就是只知道图片从100KB改成了120KB,但到底改了啥,版本控制系统不知道,也没法知道。
不幸的是,Microsoft的Word格式是二进制格式,因此,版本控制系统是没法跟踪Word文件的改动的,前面我们举的例子只是为了演示,如果要真正使用版本控制系统,就要以纯文本方式编写文件。
因为文本是有编码的,比如中文有常用的GBK编码,日文有Shift_JIS编码,如果没有历史遗留问题,强烈建议使用标准的UTF-8编码,所有语言使用同一种编码,既没有冲突,又被所有平台所支持。
使用Windows的童鞋要特别注意:
千万不要使用Windows自带的记事本编辑任何文本文件。原因是Microsoft开发记事本的团队使用了一个非常弱智的行为来保存UTF-8编码的文件,他们自作聪明地在每个文件开头添加了0xefbbbf(十六进制)的字符,你会遇到很多不可思议的问题,比如,网页第一行可能会显示一个“?”,明明正确的程序一编译就报语法错误,等等,都是由记事本的弱智行为带来的。建议你下载Visual Studio Code代替记事本,不但功能强大,而且免费!
言归正传,现在我们编写一个readme.txt
文件,内容如下:
Git is a version control system.
Git is free software.
一定要放到learngit
目录下(子目录也行),因为这是一个Git仓库,放到其他地方Git再厉害也找不到这个文件。
和把大象放到冰箱需要3步相比,把一个文件放到Git仓库只需要两步。
第一步,用命令git add
告诉Git,把文件添加到仓库:
$ git add readme.txt
执行上面的命令,没有任何显示,这就对了,Unix的哲学是“没有消息就是好消息”,说明添加成功。
第二步,用命令git commit
告诉Git,把文件提交到仓库:
git commit -m "wrote a readme file"
简单解释一下git commit
命令,-m
后面输入的是本次提交的说明,可以输入任意内容,当然最好是有意义的,这样你就能从历史记录里方便地找到改动记录。
嫌麻烦不想输入-m "xxx"
行不行?确实有办法可以这么干,但是强烈不建议你这么干,因为输入说明对自己对别人阅读都很重要。实在不想输入说明的童鞋请自行Google,我不告诉你这个参数。
git commit
命令执行成功后会告诉你,1 file changed
:1个文件被改动(我们新添加的readme.txt文件);2 insertions
:插入了两行内容(readme.txt有两行内容)。
为什么Git添加文件需要add
,commit
一共两步呢?因为commit
可以一次提交很多文件,所以你可以多次add
不同的文件,比如:
$ git add file1.txt
$ git add file2.txt file3.txt
$ git commit -m "add 3 files."
我们已经成功地添加并提交了一个readme.txt文件,现在,是时候继续工作了,于是,我们继续修改readme.txt文件,改成如下内容:
Git is a distributed version control system.
Git is free software.
现在,运行git status
命令看看结果:
git status
git status
命令可以让我们时刻掌握仓库当前的状态,上面的命令输出告诉我们,readme.txt
被修改过了,但还没有准备提交的修改。
虽然Git告诉我们readme.txt
被修改了,但如果能看看具体修改了什么内容,自然是很好的。比如你休假两周从国外回来,第一天上班时,已经记不清上次怎么修改的readme.txt
,所以,需要用git diff
这个命令看看:
git diff readme.txt
git diff
顾名思义就是查看difference,显示的格式正是Unix通用的diff格式,可以从上面的命令输出看到,我们在第一行添加了一个distributed
单词。
知道了对readme.txt
作了什么修改后,再把它提交到仓库就放心多了,提交修改和提交新文件是一样的两步,第一步是git add
:
$ git add readme.txt
同样没有任何输出。在执行第二步git commit
之前,我们再运行git status
看看当前仓库的状态:
git status
git status
告诉我们,将要被提交的修改包括readme.txt
,下一步,就可以放心地提交了:
git commit -m "add distributed"
提交后,我们再用git status
命令看看仓库的当前状态:
git status
Git告诉我们当前没有需要提交的修改,而且,工作目录是干净(working tree clean)的。
现在,你已经学会了修改文件,然后把修改提交到Git版本库,现在,再练习一次,修改readme.txt文件如下:
Git is a distributed version control system.
Git is free software distributed under the GPL.
然后尝试提交:
git add readme.txt
git commit -m "append GPL"
像这样,你不断对文件进行修改,然后不断提交修改到版本库里,就好比玩RPG游戏时,每通过一关就会自动把游戏状态存盘,如果某一关没过去,你还可以选择读取前一关的状态。有些时候,在打Boss之前,你会手动存盘,以便万一打Boss失败了,可以从最近的地方重新开始。Git也是一样,每当你觉得文件修改到一定程度的时候,就可以“保存一个快照”,这个快照在Git中被称为commit
。一旦你把文件改乱了,或者误删了文件,还可以从最近的一个commit
恢复,然后继续工作,而不是把几个月的工作成果全部丢失。
现在,我们回顾一下readme.txt
文件一共有几个版本被提交到Git仓库里了:
版本1:wrote a readme file
Git is a version control system.
Git is free software.
版本2:add distributed
Git is a distributed version control system.
Git is free software.
版本3:append GPL
Git is a distributed version control system.
Git is free software distributed under the GPL.
当然了,在实际工作中,我们脑子里怎么可能记得一个几千行的文件每次都改了什么内容,不然要版本控制系统干什么。版本控制系统肯定有某个命令可以告诉我们历史记录,在Git中,我们用git log
命令查看:
git log
git log
命令显示从最近到最远的提交日志,我们可以看到3次提交,最近的一次是append GPL
,上一次是add distributed
,最早的一次是wrote a readme file
。
如果嫌输出信息太多,看得眼花缭乱的,可以试试加上--pretty=oneline
参数:
git log --pretty=oneline
需要友情提示的是,你看到的一大串类似1094adb...
的是commit id
(版本号),和SVN不一样,Git的commit id
不是1,2,3……递增的数字,而是一个SHA1计算出来的一个非常大的数字,用十六进制表示,而且你看到的commit id
和我的肯定不一样,以你自己的为准。为什么commit id
需要用这么一大串数字表示呢?因为Git是分布式的版本控制系统,后面我们还要研究多人在同一个版本库里工作,如果大家都用1,2,3……作为版本号,那肯定就冲突了。
每提交一个新版本,实际上Git就会把它们自动串成一条时间线。如果使用可视化工具查看Git历史,就可以更清楚地看到提交历史的时间线:
好了,现在我们启动时光穿梭机,准备把readme.txt
回退到上一个版本,也就是add distributed
的那个版本,怎么做呢?
首先,Git必须知道当前版本是哪个版本,在Git中,用HEAD
表示当前版本,也就是最新的提交1094adb...
(注意我的提交ID和你的肯定不一样),上一个版本就是HEAD^
,上上一个版本就是HEAD^^
,当然往上100个版本写100个^
比较容易数不过来,所以写成HEAD~100
。
现在,我们要把当前版本append GPL
回退到上一个版本add distributed
,就可以使用git reset
命令:
git reset --hard HEAD^
--hard
参数有啥意义?这个后面再讲,现在你先放心使用。
看看readme.txt
的内容是不是版本add distributed
:
$ cat readme.txt
Git is a distributed version control system.
Git is free software.
果然被还原了。
还可以继续回退到上一个版本wrote a readme file
,不过且慢,让我们用git log
再看看现在版本库的状态:
git log
最新的那个版本append GPL
已经看不到了!好比你从21世纪坐时光穿梭机来到了19世纪,想再回去已经回不去了,肿么办?
办法其实还是有的,只要上面的命令行窗口还没有被关掉,你就可以顺着往上找啊找啊,找到那个append GPL
的commit id
是1094adb...
,于是就可以指定回到未来的某个版本:
$ git reset --hard 1094a
HEAD is now at 83b0afe append GPL
版本号没必要写全,前几位就可以了,Git会自动去找。当然也不能只写前一两位,因为Git可能会找到多个版本号,就无法确定是哪一个了。
再小心翼翼地看看readme.txt
的内容:
cat readme.txt
果然,我胡汉三又回来了。
Git的版本回退速度非常快,因为Git在内部有个指向当前版本的HEAD
指针,当你回退版本的时候,Git仅仅是把HEAD从指向append GPL
:
┌────┐
│HEAD│
└────┘
│
└──▶ ○ append GPL
│
○ add distributed
│
○ wrote a readme file
改为指向add distributed
:
┌────┐
│HEAD│
└────┘
│
│ ○ append GPL
│ │
└──▶ ○ add distributed
│
○ wrote a readme file
然后顺便把工作区的文件更新了。所以你让HEAD
指向哪个版本号,你就把当前版本定位在哪。
现在,你回退到了某个版本,关掉了电脑,第二天早上就后悔了,想恢复到新版本怎么办?找不到新版本的commit id
怎么办?
在Git中,总是有后悔药可以吃的。当你用$ git reset --hard HEAD^
回退到add distributed
版本时,再想恢复到append GPL
,就必须找到append GPL
的commit id。Git提供了一个命令git reflog
用来记录你的每一次命令:
$ git reflog
e475afc HEAD@{1}: reset: moving to HEAD^
1094adb (HEAD -> master) HEAD@{2}: commit: append GPL
e475afc HEAD@{3}: commit: add distributed
eaadf4e HEAD@{4}: commit (initial): wrote a readme file
终于舒了口气,从输出可知,append GPL
的commit id是1094adb
,现在,你又可以乘坐时光机回到未来了。
Git和其他版本控制系统如SVN的一个不同之处就是有暂存区的概念。
先来看名词解释。
就是你在电脑里能看到的目录,比如我的learngit
文件夹就是一个工作区:
工作区有一个隐藏目录.git
,这个不算工作区,而是Git的版本库。
Git的版本库里存了很多东西,其中最重要的就是称为stage(或者叫index)的暂存区,还有Git为我们自动创建的第一个分支master
,以及指向master
的一个指针叫HEAD
。
分支和HEAD
的概念我们以后再讲。
前面讲了我们把文件往Git版本库里添加的时候,是分两步执行的:
第一步是用git add
把文件添加进去,实际上就是把文件修改添加到暂存区;
第二步是用git commit
提交更改,实际上就是把暂存区的所有内容提交到当前分支。
因为我们创建Git版本库时,Git自动为我们创建了唯一一个master
分支,所以,现在,git commit
就是往master
分支上提交更改。
你可以简单理解为,需要提交的文件修改通通放到暂存区,然后,一次性提交暂存区的所有修改。
俗话说,实践出真知。现在,我们再练习一遍,先对readme.txt
做个修改,比如加上一行内容:
Git is a distributed version control system.
Git is free software distributed under the GPL.
Git has a mutable index called stage.
然后,在工作区新增一个LICENSE
文本文件(内容随便写)。
先用git status
查看一下状态:
git status
Git非常清楚地告诉我们,readme.txt
被修改了,而LICENSE
还从来没有被添加过,所以它的状态是Untracked
。
现在,使用两次命令git add
,把readme.txt
和LICENSE
都添加后,用git status
再查看一下:
git add .
git status
现在,暂存区的状态就变成这样了:
所以,git add
命令实际上就是把要提交的所有修改放到暂存区(Stage),然后,执行git commit
就可以一次性把暂存区的所有修改提交到分支。
git commit -m "understand how stage works"
一旦提交后,如果你又没有对工作区做任何修改,那么工作区就是“干净”的:
git status
现在版本库变成了这样,暂存区就没有任何内容了:
现在,假定你已经完全掌握了暂存区的概念。下面,我们要讨论的就是,为什么Git比其他版本控制系统设计得优秀,因为Git跟踪并管理的是修改,而非文件。
你会问,什么是修改?比如你新增了一行,这就是一个修改,删除了一行,也是一个修改,更改了某些字符,也是一个修改,删了一些又加了一些,也是一个修改,甚至创建一个新文件,也算一个修改。
为什么说Git管理的是修改,而不是文件呢?我们还是做实验。第一步,对readme.txt做一个修改,比如加一行内容:
$ cat readme.txt
Git is a distributed version control system.
Git is free software distributed under the GPL.
Git has a mutable index called stage.
Git tracks changes.
然后,添加:
git add readme.txt
git status
然后,再修改readme.txt:
$ cat readme.txt
Git is a distributed version control system.
Git is free software distributed under the GPL.
Git has a mutable index called stage.
Git tracks changes of files.
提交:
git commit -m "git tracks changes"
提交后,再看看状态:
git status
咦,怎么第二次的修改没有被提交?
别激动,我们回顾一下操作过程:
第一次修改 -> git add
-> 第二次修改 -> git commit
你看,我们前面讲了,Git管理的是修改,当你用git add
命令后,在工作区的第一次修改被放入暂存区,准备提交,但是,在工作区的第二次修改并没有放入暂存区,所以,git commit
只负责把暂存区的修改提交了,也就是第一次的修改被提交了,第二次的修改不会被提交。
提交后,用git diff HEAD -- readme.txt
命令可以查看工作区和版本库里面最新版本的区别:
git diff HEAD -- readme.txt
可见,第二次修改确实没有被提交。
那怎么提交第二次修改呢?你可以继续git add
再git commit
,也可以别着急提交第一次修改,先git add
第二次修改,再git commit
,就相当于把两次修改合并后一块提交了:
第一次修改 -> git add
-> 第二次修改 -> git add
-> git commit
自然,你是不会犯错的。不过现在是凌晨两点,你正在赶一份工作报告,你在readme.txt
中添加了一行:
$ cat readme.txt
Git is a distributed version control system.
Git is free software distributed under the GPL.
Git has a mutable index called stage.
Git tracks changes of files.
My stupid boss still prefers SVN.
在你准备提交前,一杯咖啡起了作用,你猛然发现了stupid boss
可能会让你丢掉这个月的奖金!
既然错误发现得很及时,就可以很容易地纠正它。你可以删掉最后一行,手动把文件恢复到上一个版本的状态。如果用git status
查看一下:
git status
你可以发现,Git会告诉你,git checkout -- file
可以丢弃工作区的修改:
$ git checkout -- readme.txt
命令git checkout -- readme.txt
意思就是,把readme.txt
文件在工作区的修改全部撤销,这里有两种情况:
一种是readme.txt
自修改后还没有被放到暂存区,现在,撤销修改就回到和版本库一模一样的状态;
一种是readme.txt
已经添加到暂存区后,又作了修改,现在,撤销修改就回到添加到暂存区后的状态。
总之,就是让这个文件回到最近一次git commit
或git add
时的状态。
现在,看看readme.txt
的文件内容:
$ cat readme.txt
Git is a distributed version control system.
Git is free software distributed under the GPL.
Git has a mutable index called stage.
Git tracks changes of files.
文件内容果然复原了。
git checkout -- file
命令中的--
很重要,没有--
,就变成了“切换到另一个分支”的命令,我们在后面的分支管理中会再次遇到git checkout
命令。
现在假定是凌晨3点,你不但写了一些胡话,还git add
到暂存区了:
$ cat readme.txt
Git is a distributed version control system.
Git is free software distributed under the GPL.
Git has a mutable index called stage.
Git tracks changes of files.
My stupid boss still prefers SVN.
$ git add readme.txt
庆幸的是,在commit
之前,你发现了这个问题。用git status
查看一下,修改只是添加到了暂存区,还没有提交:
git status
Git同样告诉我们,用命令git reset HEAD
可以把暂存区的修改撤销掉(unstage),重新放回工作区:
git reset HEAD readme.txt
git reset
命令既可以回退版本,也可以把暂存区的修改回退到工作区。当我们用HEAD
时,表示最新的版本。
再用git status
查看一下,现在暂存区是干净的,工作区有修改:
git status
还记得如何丢弃工作区的修改吗?
git checkout -- readme.txt
git status
整个世界终于清静了!
现在,假设你不但改错了东西,还从暂存区提交到了版本库,怎么办呢?还记得版本回退一节吗?可以回退到上一个版本。不过,这是有条件的,就是你还没有把自己的本地版本库推送到远程。还记得Git是分布式版本控制系统吗?我们后面会讲到远程版本库,一旦你把stupid boss
提交推送到远程版本库,你就真的惨了……
在Git中,删除也是一个修改操作,我们实战一下,先添加一个新文件test.txt
到Git并且提交:
git add test.txt
git commit -m "add test.txt"
一般情况下,你通常直接在文件管理器中把没用的文件删了,或者用rm
命令删了:
rm test.txt
这个时候,Git知道你删除了文件,因此,工作区和版本库就不一致了,git status
命令会立刻告诉你哪些文件被删除了:
git status
现在你有两个选择,一是确实要从版本库中删除该文件,那就用命令git rm
删掉,并且git commit
:
$ git rm test.txt
rm 'test.txt'
$ git commit -m "remove test.txt"
[master d46f35e] remove test.txt
1 file changed, 1 deletion(-)
delete mode 100644 test.txt
现在,文件就从版本库中被删除了。
小提示:先手动删除文件,然后使用git rm
另一种情况是删错了,因为版本库里还有呢,所以可以很轻松地把误删的文件恢复到最新版本:
$ git checkout -- test.txt
git checkout
其实是用版本库里的版本替换工作区的版本,无论工作区是修改还是删除,都可以“一键还原”。
注意:从来没有被添加到版本库就被删除的文件,是无法恢复的!
自行设置:远程仓库 - 廖雪峰的官方网站 (liaoxuefeng.com)
现在的情景是,你已经在本地创建了一个Git仓库后,又想在GitHub创建一个Git仓库,并且让这两个仓库进行远程同步,这样,GitHub上的仓库既可以作为备份,又可以让其他人通过该仓库来协作,真是一举多得。
首先,登陆GitHub,然后,在右上角找到“Create a new repo”按钮,创建一个新的仓库:
在Repository name填入learngit
,其他保持默认设置,点击“Create repository”按钮,就成功地创建了一个新的Git仓库:
目前,在GitHub上的这个learngit
仓库还是空的,GitHub告诉我们,可以从这个仓库克隆出新的仓库,也可以把一个已有的本地仓库与之关联,然后,把本地仓库的内容推送到GitHub仓库。
现在,我们根据GitHub的提示,在本地的learngit
仓库下运行命令:
$ git remote add origin [email protected]:michaelliao/learngit.git
请千万注意,把上面的michaelliao
替换成你自己的GitHub账户名,否则,你在本地关联的就是我的远程库,关联没有问题,但是你以后推送是推不上去的,因为你的SSH Key公钥不在我的账户列表中。
添加后,远程库的名字就是origin
,这是Git默认的叫法,也可以改成别的,但是origin
这个名字一看就知道是远程库。
下一步,就可以把本地库的所有内容推送到远程库上:
$ git push -u origin master
Counting objects: 20, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (15/15), done.
Writing objects: 100% (20/20), 1.64 KiB | 560.00 KiB/s, done.
Total 20 (delta 5), reused 0 (delta 0)
remote: Resolving deltas: 100% (5/5), done.
To github.com:michaelliao/learngit.git
* [new branch] master -> master
Branch 'master' set up to track remote branch 'master' from 'origin'.
把本地库的内容推送到远程,用git push
命令,实际上是把当前分支master
推送到远程。
由于远程库是空的,我们第一次推送master
分支时,加上了-u
参数,Git不但会把本地的master
分支内容推送的远程新的master
分支,还会把本地的master
分支和远程的master
分支关联起来,在以后的推送或者拉取时就可以简化命令。
推送成功后,可以立刻在GitHub页面中看到远程库的内容已经和本地一模一样:
从现在起,只要本地作了提交,就可以通过命令:
$ git push origin master
把本地master
分支的最新修改推送至GitHub,现在,你就拥有了真正的分布式版本库!
自行设置:从远程库克隆 - 廖雪峰的官方网站 (liaoxuefeng.com)
分支就是科幻电影里面的平行宇宙,当你正在电脑前努力学习Git的时候,另一个你正在另一个平行宇宙里努力学习SVN。
如果两个平行宇宙互不干扰,那对现在的你也没啥影响。不过,在某个时间点,两个平行宇宙合并了,结果,你既学会了Git又学会了SVN!
分支在实际中有什么用呢?假设你准备开发一个新功能,但是需要两周才能完成,第一周你写了50%的代码,如果立刻提交,由于代码还没写完,不完整的代码库会导致别人不能干活了。如果等代码全部写完再一次提交,又存在丢失每天进度的巨大风险。
现在有了分支,就不用怕了。你创建了一个属于你自己的分支,别人看不到,还继续在原来的分支上正常工作,而你在自己的分支上干活,想提交就提交,直到开发完毕后,再一次性合并到原来的分支上,这样,既安全,又不影响别人工作。
其他版本控制系统如SVN等都有分支管理,但是用过之后你会发现,这些版本控制系统创建和切换分支比蜗牛还慢,简直让人无法忍受,结果分支功能成了摆设,大家都不去用。
但Git的分支是与众不同的,无论创建、切换和删除分支,Git在1秒钟之内就能完成!无论你的版本库是1个文件还是1万个文件。
在版本回退里,你已经知道,每次提交,Git都把它们串成一条时间线,这条时间线就是一个分支。截止到目前,只有一条时间线,在Git里,这个分支叫主分支,即master
分支。HEAD
严格来说不是指向提交,而是指向master
,master
才是指向提交的,所以,HEAD
指向的就是当前分支。
一开始的时候,master
分支是一条线,Git用master
指向最新的提交,再用HEAD
指向master
,就能确定当前分支,以及当前分支的提交点:
HEAD
│
│
▼
master
│
│
▼
┌───┐ ┌───┐ ┌───┐
│ │───▶│ │───▶│ │
└───┘ └───┘ └───┘
每次提交,master
分支都会向前移动一步,这样,随着你不断提交,master
分支的线也越来越长。
当我们创建新的分支,例如dev
时,Git新建了一个指针叫dev
,指向master
相同的提交,再把HEAD
指向dev
,就表示当前分支在dev
上:
master
│
│
▼
┌───┐ ┌───┐ ┌───┐
│ │───▶│ │───▶│ │
└───┘ └───┘ └───┘
▲
│
│
dev
▲
│
│
HEAD
你看,Git创建一个分支很快,因为除了增加一个dev
指针,改改HEAD
的指向,工作区的文件都没有任何变化!
不过,从现在开始,对工作区的修改和提交就是针对dev
分支了,比如新提交一次后,dev
指针往前移动一步,而master
指针不变:
master
│
│
▼
┌───┐ ┌───┐ ┌───┐ ┌───┐
│ │───▶│ │───▶│ │───▶│ │
└───┘ └───┘ └───┘ └───┘
▲
│
│
dev
▲
│
│
HEAD
假如我们在dev
上的工作完成了,就可以把dev
合并到master
上。Git怎么合并呢?最简单的方法,就是直接把master
指向dev
的当前提交,就完成了合并:
HEAD
│
│
▼
master
│
│
▼
┌───┐ ┌───┐ ┌───┐ ┌───┐
│ │───▶│ │───▶│ │───▶│ │
└───┘ └───┘ └───┘ └───┘
▲
│
│
dev
所以Git合并分支也很快!就改改指针,工作区内容也不变!
合并完分支后,甚至可以删除dev
分支。删除dev
分支就是把dev
指针给删掉,删掉后,我们就剩下了一条master
分支:
HEAD
│
│
▼
master
│
│
▼
┌───┐ ┌───┐ ┌───┐ ┌───┐
│ │───▶│ │───▶│ │───▶│ │
└───┘ └───┘ └───┘ └───┘
真是太神奇了,你看得出来有些提交是通过分支完成的吗?
下面开始实战。
首先,我们创建dev
分支,然后切换到dev
分支:
git checkout -b dev
git checkout
命令加上-b
参数表示创建并切换,相当于以下两条命令:
$ git branch dev
$ git checkout dev
Switched to branch 'dev'
然后,用git branch
命令查看当前分支:
$ git branch
* dev
master
git branch
命令会列出所有分支,当前分支前面会标一个*
号。
然后,我们就可以在dev
分支上正常提交,比如对readme.txt
做个修改,加上一行:
Creating a new branch is quick.
然后提交:
git add readme.txt
git commit -m "branch test"
现在,dev
分支的工作完成,我们就可以切换回master
分支:
$ git checkout master
Switched to branch 'master'
切换回master
分支后,再查看一个readme.txt
文件,刚才添加的内容不见了!因为那个提交是在dev
分支上,而master
分支此刻的提交点并没有变:
现在,我们把dev
分支的工作成果合并到master
分支上:
git merge dev
git merge
命令用于合并指定分支到当前分支。合并后,再查看readme.txt
的内容,就可以看到,和dev
分支的最新提交是完全一样的。
注意到上面的Fast-forward
信息,Git告诉我们,这次合并是“快进模式”,也就是直接把master
指向dev
的当前提交,所以合并速度非常快。
当然,也不是每次合并都能Fast-forward
,我们后面会讲其他方式的合并。
合并完成后,就可以放心地删除dev
分支了:
git branch -d dev
删除后,查看branch
,就只剩下master
分支了:
$ git branch
* master
因为创建、合并和删除分支非常快,所以Git鼓励你使用分支完成某个任务,合并后再删掉分支,这和直接在master
分支上工作效果是一样的,但过程更安全。
我们注意到切换分支使用git checkout
,而前面讲过的撤销修改则是git checkout --
,同一个命令,有两种作用,确实有点令人迷惑。
实际上,切换分支这个动作,用switch
更科学。因此,最新版本的Git提供了新的git switch
命令来切换分支:
创建并切换到新的dev
分支,可以使用:
$ git switch -c dev
直接切换到已有的master
分支,可以使用:
$ git switch master
使用新的git switch
命令,比git checkout
要更容易理解。
Git鼓励大量使用分支:
查看分支:git branch
创建分支:git branch
切换分支:git checkout
或者git switch
创建+切换分支:git checkout -b
或者git switch -c
合并某分支到当前分支:git merge
删除分支:git branch -d
人生不如意之事十之八九,合并分支往往也不是一帆风顺的。
准备新的feature1
分支,继续我们的新分支开发:
$ git switch -c feature1
Switched to a new branch 'feature1'
修改readme.txt
最后一行,改为:
Creating a new branch is quick AND simple.
在feature1
分支上提交:
git add readme.txt
git commit -m "AND simple"
切换到master
分支:
git switch master
Git还会自动提示我们当前master
分支比远程的master
分支要超前1个提交。
在master
分支上把readme.txt
文件的最后一行改为:
Creating a new branch is quick & simple.
提交:
git add readme.txt
git commit -m "& simple"
现在,master
分支和feature1
分支各自都分别有新的提交,变成了这样:
HEAD
│
│
▼
master
│
│
▼
┌───┐
┌─▶│ │
┌───┐ ┌───┐ ┌───┐ │ └───┘
│ │───▶│ │───▶│ │──┤
└───┘ └───┘ └───┘ │ ┌───┐
└─▶│ │
└───┘
▲
│
│
feature1
这种情况下,Git无法执行“快速合并”,只能试图把各自的修改合并起来,但这种合并就可能会有冲突,我们试试看:
git merge feature1
果然冲突了!Git告诉我们,readme.txt
文件存在冲突,必须手动解决冲突后再提交。git status
也可以告诉我们冲突的文件:
git status
我们可以直接查看readme.txt的内容:
Git is a distributed version control system.
Git is free software distributed under the GPL.
Git has a mutable index called stage.
Git tracks changes of files.
<<<<<<< HEAD
Creating a new branch is quick & simple.
=======
Creating a new branch is quick AND simple.
>>>>>>> feature1
Git用<<<<<<<
,=======
,>>>>>>>
标记出不同分支的内容,我们修改如下后保存:
Creating a new branch is quick and simple.
再提交:
git add readme.txt
git commit -m "conflict fixed"
现在,master
分支和feature1
分支变成了下图所示:
HEAD
│
│
▼
master
│
│
▼
┌───┐ ┌───┐
┌─▶│ │───▶│ │
┌───┐ ┌───┐ ┌───┐ │ └───┘ └───┘
│ │───▶│ │───▶│ │──┤ ▲
└───┘ └───┘ └───┘ │ ┌───┐ │
└─▶│ │──────┘
└───┘
▲
│
│
feature1
用带参数的git log
也可以看到分支的合并情况:
git log --graph --pretty=oneline --abbrev-commit
最后,删除feature1
分支:
git branch -d feature1
工作完成。
当Git无法自动合并分支时,就必须首先解决冲突。解决冲突后,再提交,合并完成。
解决冲突就是把Git合并失败的文件手动编辑为我们希望的内容,再提交。
用git log --graph
命令可以看到分支合并图。
通常,合并分支时,如果可能,Git会用Fast forward
模式,但这种模式下,删除分支后,会丢掉分支信息。
如果要强制禁用Fast forward
模式,Git就会在merge时生成一个新的commit,这样,从分支历史上就可以看出分支信息。
下面我们实战一下--no-ff
方式的git merge
:
首先,仍然创建并切换dev
分支:
git switch -c dev
修改readme.txt文件,并提交一个新的commit:
git add readme.txt
git commit -m "add merge"
现在,我们切换回master
:
git switch master
准备合并dev
分支,请注意--no-ff
参数,表示禁用Fast forward
:
git merge --no-ff -m "merge with no-ff" dev
因为本次合并要创建一个新的commit,所以加上-m
参数,把commit描述写进去。
合并后,我们用git log
看看分支历史:
git log --graph --pretty=oneline --abbrev-commit
可以看到,不使用Fast forward
模式,merge后就像这样:
在实际开发中,我们应该按照几个基本原则进行分支管理:
首先,master
分支应该是非常稳定的,也就是仅用来发布新版本,平时不能在上面干活;
那在哪干活呢?干活都在dev
分支上,也就是说,dev
分支是不稳定的,到某个时候,比如1.0版本发布时,再把dev
分支合并到master
上,在master
分支发布1.0版本;
你和你的小伙伴们每个人都在dev
分支上干活,每个人都有自己的分支,时不时地往dev
分支上合并就可以了。
所以,团队合作的分支看起来就像这样:
软件开发中,bug就像家常便饭一样。有了bug就需要修复,在Git中,由于分支是如此的强大,所以,每个bug都可以通过一个新的临时分支来修复,修复后,合并分支,然后将临时分支删除。
当你接到一个修复一个代号101的bug的任务时,很自然地,你想创建一个分支issue-101
来修复它,但是,等等,当前正在dev
上进行的工作还没有提交:
$ git status
On branch dev
Changes to be committed:
(use "git reset HEAD ..." to unstage)
new file: hello.py
Changes not staged for commit:
(use "git add ..." to update what will be committed)
(use "git checkout -- ..." to discard changes in working directory)
modified: readme.txt
并不是你不想提交,而是工作只进行到一半,还没法提交,预计完成还需1天时间。但是,必须在两个小时内修复该bug,怎么办?
幸好,Git还提供了一个stash
功能,可以把当前工作现场“储藏”起来,等以后恢复现场后继续工作:
$ git stash
Saved working directory and index state WIP on dev: f52c633 add merge
现在,用git status
查看工作区,就是干净的(除非有没有被Git管理的文件),因此可以放心地创建分支来修复bug。
首先确定要在哪个分支上修复bug,假定需要在master
分支上修复,就从master
创建临时分支:
git checkout master
git checkout -b issue-101
现在修复bug,需要把“Git is free software ...”改为“Git is a free software ...”,然后提交:
git add readme.txt
git commit -m "fix bug 101"
修复完成后,切换到master
分支,并完成合并,最后删除issue-101
分支:
git switch master
git merge --no-ff -m "merged bug fix 101" issue-101
太棒了,原计划两个小时的bug修复只花了5分钟!现在,是时候接着回到dev
分支干活了!
git switch dev
git status
工作区是干净的,刚才的工作现场存到哪去了?用git stash list
命令看看:
$ git stash list
stash@{0}: WIP on dev: f52c633 add merge
工作现场还在,Git把stash内容存在某个地方了,但是需要恢复一下,有两个办法:
一是用git stash apply
恢复,但是恢复后,stash内容并不删除,你需要用git stash drop
来删除;
另一种方式是用git stash pop
,恢复的同时把stash内容也删了:
git stash pop
再用git stash list
查看,就看不到任何stash内容了:
git stash list
可以多次stash,恢复的时候,先用git stash list
查看,然后恢复指定的stash,用命令:
$ git stash apply stash@{0}
在master分支上修复了bug后,我们要想一想,dev分支是早期从master分支分出来的,所以,这个bug其实在当前dev分支上也存在。
那怎么在dev分支上修复同样的bug?重复操作一次,提交不就行了?
有木有更简单的方法?
有!
同样的bug,要在dev上修复,我们只需要把4c805e2 fix bug 101
这个提交所做的修改“复制”到dev分支。注意:我们只想复制4c805e2 fix bug 101
这个提交所做的修改,并不是把整个master分支merge过来。
为了方便操作,Git专门提供了一个cherry-pick
命令,让我们能复制一个特定的提交到当前分支:
git branch
git cherry-pick 4c805e2
Git自动给dev分支做了一次提交,注意这次提交的commit是1d4b803
,它并不同于master的4c805e2
,因为这两个commit只是改动相同,但确实是两个不同的commit。用git cherry-pick
,我们就不需要在dev分支上手动再把修bug的过程重复一遍。
有些聪明的童鞋会想了,既然可以在master分支上修复bug后,在dev分支上可以“重放”这个修复过程,那么直接在dev分支上修复bug,然后在master分支上“重放”行不行?当然可以,不过你仍然需要git stash
命令保存现场,才能从dev分支切换到master分支。
软件开发中,总有无穷无尽的新的功能要不断添加进来。
添加一个新功能时,你肯定不希望因为一些实验性质的代码,把主分支搞乱了,所以,每添加一个新功能,最好新建一个feature分支,在上面开发,完成后,合并,最后,删除该feature分支。
现在,你终于接到了一个新任务:开发代号为Vulcan的新功能,该功能计划用于下一代星际飞船。
于是准备开发:
git switch -c feature-vulcan
5分钟后,开发完毕:
git add 1.py
git status
git commit -m "add feature 1"
切回dev
,准备合并:
$ git switch dev
一切顺利的话,feature分支和bug分支是类似的,合并,然后删除。
但是!
就在此时,接到上级命令,因经费不足,新功能必须取消!
虽然白干了,但是这个包含机密资料的分支还是必须就地销毁:
$ git branch -d feature-vulcan
error: The branch 'feature-vulcan' is not fully merged.
If you are sure you want to delete it, run 'git branch -D feature-vulcan'.
销毁失败。Git友情提醒,feature-vulcan
分支还没有被合并,如果删除,将丢失掉修改,如果要强行删除,需要使用大写的-D
参数。。
现在我们强行删除:
$ git branch -D feature-vulcan
Deleted branch feature-vulcan (was 287773e).
终于删除成功!
当你从远程仓库克隆时,实际上Git自动把本地的master
分支和远程的master
分支对应起来了,并且,远程仓库的默认名称是origin
。
要查看远程库的信息,用git remote
:
$ git remote
origin
或者,用git remote -v
显示更详细的信息:
git remote -v
上面显示了可以抓取和推送的origin
的地址。如果没有推送权限,就看不到push的地址。
推送分支,就是把该分支上的所有本地提交推送到远程库。推送时,要指定本地分支,这样,Git就会把该分支推送到远程库对应的远程分支上:
git push origin master
如果要推送其他分支,比如dev
,就改成:
$ git push origin dev
但是,并不是一定要把本地分支往远程推送,那么,哪些分支需要推送,哪些不需要呢?
master
分支是主分支,因此要时刻与远程同步;
dev
分支是开发分支,团队所有成员都需要在上面工作,所以也需要与远程同步;
bug分支只用于在本地修复bug,就没必要推到远程了,除非老板要看看你每周到底修复了几个bug;
feature分支是否推到远程,取决于你是否和你的小伙伴合作在上面开发。
总之,就是在Git中,分支完全可以在本地自己藏着玩,是否推送,视你的心情而定!
多人协作时,大家都会往master
和dev
分支上推送各自的修改。
现在,模拟一个你的小伙伴,可以在另一台电脑(注意要把SSH Key添加到GitHub)或者同一台电脑的另一个目录下克隆:
git clone [email protected]:michaelliao/learngit.git
当你的小伙伴从远程库clone时,默认情况下,你的小伙伴只能看到本地的master
分支。不信可以用git branch
命令看看:
git branch
现在,你的小伙伴要在dev
分支上开发,就必须创建远程origin
的dev
分支到本地,于是他用这个命令创建本地dev
分支:
$ git checkout -b dev origin/dev
现在,他就可以在dev
上继续修改,然后,时不时地把dev
分支push
到远程:
git add readme.txt
git commit -m "add env"
git push origin dev
你的小伙伴已经向origin/dev
分支推送了他的提交,而碰巧你也对同样的文件作了修改,并试图推送:
git add env.txt
git commit -m "add new env"
git push origin dev
推送失败,因为你的小伙伴的最新提交和你试图推送的提交有冲突,解决办法也很简单,Git已经提示我们,先用git pull
把最新的提交从origin/dev
抓下来,然后,在本地合并,解决冲突,再推送:
git pull
git pull
也失败了,原因是没有指定本地dev
分支与远程origin/dev
分支的链接,根据提示,设置dev
和origin/dev
的链接:
git branch --set-upstream-to=origin/dev dev
再pull:
git pull
这回git pull
成功,但是合并有冲突,需要手动解决,解决的方法和分支管理中的解决冲突完全一样。解决后,提交,再push:
git commit -m "fix env conflict"
git push origin dev
因此,多人协作的工作模式通常是这样:
首先,可以试图用git push origin
推送自己的修改;
如果推送失败,则因为远程分支比你的本地更新,需要先用git pull
试图合并;
如果合并有冲突,则解决冲突,并在本地提交;
没有冲突或者解决掉冲突后,再用git push origin
推送就能成功!
如果git pull
提示no tracking information
,则说明本地分支和远程分支的链接关系没有创建,用命令git branch --set-upstream-to
。
这就是多人协作的工作模式,一旦熟悉了,就非常简单。
在上一节我们看到了,多人在同一个分支上协作时,很容易出现冲突。即使没有冲突,后push的童鞋不得不先pull,在本地合并,然后才能push成功。
每次合并再push后,分支变成了这样:
git log --graph --pretty=oneline --abbrev-commit
总之看上去很乱,有强迫症的童鞋会问:为什么Git的提交历史不能是一条干净的直线?
其实是可以做到的!
Git有一种称为rebase的操作,有人把它翻译成“变基”。
先不要随意展开想象。我们还是从实际问题出发,看看怎么把分叉的提交变成直线。
在和远程分支同步后,我们对hello.py
这个文件做了两次提交。用git log
命令看看:
$ git log --graph --pretty=oneline --abbrev-commit
* 582d922 (HEAD -> master) add author
* 8875536 add comment
* d1be385 (origin/master) init hello
* e5e69f1 Merge branch 'dev'
|\
| * 57c53ab (origin/dev, dev) fix env conflict
| |\
| | * 7a5e5dd add env
| * | 7bd91f1 add new env
...
注意到Git用(HEAD -> master)
和(origin/master)
标识出当前分支的HEAD和远程origin的位置分别是582d922 add author
和d1be385 init hello
,本地分支比远程分支快两个提交。
现在我们尝试推送本地分支:
$ git push origin master
To github.com:michaelliao/learngit.git
! [rejected] master -> master (fetch first)
error: failed to push some refs to '[email protected]:michaelliao/learngit.git'
hint: Updates were rejected because the remote contains work that you do
hint: not have locally. This is usually caused by another repository pushing
hint: to the same ref. You may want to first integrate the remote changes
hint: (e.g., 'git pull ...') before pushing again.
hint: See the 'Note about fast-forwards' in 'git push --help' for details.
很不幸,失败了,这说明有人先于我们推送了远程分支。按照经验,先pull一下:
$ git pull
remote: Counting objects: 3, done.
remote: Compressing objects: 100% (1/1), done.
remote: Total 3 (delta 1), reused 3 (delta 1), pack-reused 0
Unpacking objects: 100% (3/3), done.
From github.com:michaelliao/learngit
d1be385..f005ed4 master -> origin/master
* [new tag] v1.0 -> v1.0
Auto-merging hello.py
Merge made by the 'recursive' strategy.
hello.py | 1 +
1 file changed, 1 insertion(+)
再用git status
看看状态:
$ git status
On branch master
Your branch is ahead of 'origin/master' by 3 commits.
(use "git push" to publish your local commits)
nothing to commit, working tree clean
加上刚才合并的提交,现在我们本地分支比远程分支超前3个提交。
用git log
看看:
$ git log --graph --pretty=oneline --abbrev-commit
* e0ea545 (HEAD -> master) Merge branch 'master' of github.com:michaelliao/learngit
|\
| * f005ed4 (origin/master) set exit=1
* | 582d922 add author
* | 8875536 add comment
|/
* d1be385 init hello
...
对强迫症童鞋来说,现在事情有点不对头,提交历史分叉了。如果现在把本地分支push到远程,有没有问题?
有!
什么问题?
不好看!
有没有解决方法?
有!
这个时候,rebase就派上了用场。我们输入命令git rebase
试试:
$ git rebase
First, rewinding head to replay your work on top of it...
Applying: add comment
Using index info to reconstruct a base tree...
M hello.py
Falling back to patching base and 3-way merge...
Auto-merging hello.py
Applying: add author
Using index info to reconstruct a base tree...
M hello.py
Falling back to patching base and 3-way merge...
Auto-merging hello.py
输出了一大堆操作,到底是啥效果?再用git log
看看:
$ git log --graph --pretty=oneline --abbrev-commit
* 7e61ed4 (HEAD -> master) add author
* 3611cfe add comment
* f005ed4 (origin/master) set exit=1
* d1be385 init hello
...
原本分叉的提交现在变成一条直线了!这种神奇的操作是怎么实现的?其实原理非常简单。我们注意观察,发现Git把我们本地的提交“挪动”了位置,放到了f005ed4 (origin/master) set exit=1
之后,这样,整个提交历史就成了一条直线。rebase操作前后,最终的提交内容是一致的,但是,我们本地的commit修改内容已经变化了,它们的修改不再基于d1be385 init hello
,而是基于f005ed4 (origin/master) set exit=1
,但最后的提交7e61ed4
内容是一致的。
这就是rebase操作的特点:把分叉的提交历史“整理”成一条直线,看上去更直观。缺点是本地的分叉提交已经被修改过了。
最后,通过push操作把本地分支推送到远程:
Mac:~/learngit michael$ git push origin master
Counting objects: 6, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (5/5), done.
Writing objects: 100% (6/6), 576 bytes | 576.00 KiB/s, done.
Total 6 (delta 2), reused 0 (delta 0)
remote: Resolving deltas: 100% (2/2), completed with 1 local object.
To github.com:michaelliao/learngit.git
f005ed4..7e61ed4 master -> master
再用git log
看看效果:
$ git log --graph --pretty=oneline --abbrev-commit
* 7e61ed4 (HEAD -> master, origin/master) add author
* 3611cfe add comment
* f005ed4 set exit=1
* d1be385 init hello
...
远程分支的提交历史也是一条直线。
搬运廖雪峰的文章: 添加远程库 - 廖雪峰的官方网站