【Hadoop学习之MapReduce】_25MR之数据清洗案例(ETL)

数据清洗(ETL):提取-转换-装载(Extract-Transform-Load)

在运行核心业务MapReduce程序之前,往往要先对数据进行清洗,清理掉不符合用户要求的数据。清理的过程往往只需要运行Mapper程序,不需要运行Reduce程序。

一、数据清洗案例实操——简单案例

  1. 需求

    去除网站日志中字段长度小于等于11的日志信息。

  2. 输入数据

    58.177.135.108 - - [19/Sep/2013:06:19:56 +0000] "GET /data-scientist-problems/?cf_action=sync_comments&post_id=59 HTTP/1.1" 200 48 "http://blog.fens.me/data-scientist-problems/" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/29.0.1547.65 Safari/537.36"
    111.192.165.229 - - [19/Sep/2013:06:20:16 +0000] "POST /wp-admin/admin-ajax.php HTTP/1.1" 200 95 "http://blog.fens.me/wp-admin/post.php?post=2445&action=edit&message=10" "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/28.0.1500.95 Safari/537.36"
    58.177.135.108 - - [19/Sep/2013:06:20:33 +0000] "GET /favicon.ico HTTP/1.1" 200 0 "-" "Mozilla/5.0 (iPhone; CPU iPhone OS 7_0 like Mac OS X) AppleWebKit/537.51.1 (KHTML, like Gecko) CriOS/30.0.1599.12 Mobile/11A465 Safari/8536.25"
    58.177.135.108 - - [19/Sep/2013:06:20:33 +0000] "GET /wp-content/uploads/2013/05/favicon.ico HTTP/1.1" 304 0 "-" "Mozilla/5.0 (iPhone; CPU iPhone OS 7_0 like Mac OS X) AppleWebKit/537.51.1 (KHTML, like Gecko) CriOS/30.0.1599.12 Mobile/11A465 Safari/8536.25"
    58.177.135.108 - - [19/Sep/2013:06:20:52 +0000] "-" 400 0 "-" "-"
    163.177.71.12 - - [19/Sep/2013:06:21:14 +0000] "HEAD / HTTP/1.1" 200 20 "-" "DNSPod-Monitor/1.0"
    ......
    
  3. 期望输出数据

    每行字段长度都大于11.

  4. 创建包名:com.easysir.etl

  5. 创建LogMapper类:

    package com.easysir.etl;
    
    import org.apache.hadoop.io.LongWritable;
    import org.apache.hadoop.io.NullWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Mapper;
    
    import java.io.IOException;
    
    public class LogMapper extends Mapper<LongWritable, Text, Text, NullWritable> {
    
        @Override
        protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
    
            // 1 获取一行
            String line = value.toString();
    
            // 2 解析数据
            boolean result = parseLog(line, context);
    
            // 3 解析未通过
            if (!result){
                return;
            }
    
            // 3 解析通过
            context.write(value, NullWritable.get());
        }
    
        private boolean parseLog(String line, Context context){
    
            String[] fields = line.split(" ");
    
            if (fields.length > 11){
                // 实现计数器功能
                context.getCounter("map", "true").increment(1);
                return true;
            }else {
                // 实现计数器功能
                context.getCounter("map", "false").increment(1);
                return false;
            }
        }
    }
    
  6. 创建LogDriver类:

    package com.easysir.etl;
    
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.NullWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    
    public class LogDriver {
    
        public static void main(String[] args) throws Exception {
    
            // 输入输出路径需要根据自己电脑上实际的输入输出路径设置
            args = new String[] { "E:\\idea-workspace\\mrWordCount\\input\\web.log", "E:\\idea-workspace\\mrWordCount\\output" };
    
            // 1 获取job信息
            Configuration conf = new Configuration();
            Job job = Job.getInstance(conf);
    
            // 2 加载jar包
            job.setJarByClass(LogDriver.class);
    
            // 3 关联map
            job.setMapperClass(LogMapper.class);
    
            // 4 设置最终输出类型
            job.setOutputKeyClass(Text.class);
            job.setOutputValueClass(NullWritable.class);
    
            // 设置reducetask个数为0
            job.setNumReduceTasks(0);
    
            // 5 设置输入和输出路径
            FileInputFormat.setInputPaths(job, new Path(args[0]));
            FileOutputFormat.setOutputPath(job, new Path(args[1]));
    
            // 6 提交
            job.waitForCompletion(true);
        }
    }
    
  7. 运行结果(计数器):
    在这里插入图片描述

二、数据清洗案例实操——复杂案例

  1. 需求

    web访问日志中的各个字段识别切分,去除日志中不合法的记录,根据清洗规则,输出过滤后的数据.

  2. 输入数据

    58.177.135.108 - - [19/Sep/2013:06:19:56 +0000] "GET /data-scientist-problems/?cf_action=sync_comments&post_id=59 HTTP/1.1" 200 48 "http://blog.fens.me/data-scientist-problems/" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/29.0.1547.65 Safari/537.36"
    111.192.165.229 - - [19/Sep/2013:06:20:16 +0000] "POST /wp-admin/admin-ajax.php HTTP/1.1" 200 95 "http://blog.fens.me/wp-admin/post.php?post=2445&action=edit&message=10" "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/28.0.1500.95 Safari/537.36"
    58.177.135.108 - - [19/Sep/2013:06:20:33 +0000] "GET /favicon.ico HTTP/1.1" 200 0 "-" "Mozilla/5.0 (iPhone; CPU iPhone OS 7_0 like Mac OS X) AppleWebKit/537.51.1 (KHTML, like Gecko) CriOS/30.0.1599.12 Mobile/11A465 Safari/8536.25"
    58.177.135.108 - - [19/Sep/2013:06:20:33 +0000] "GET /wp-content/uploads/2013/05/favicon.ico HTTP/1.1" 304 0 "-" "Mozilla/5.0 (iPhone; CPU iPhone OS 7_0 like Mac OS X) AppleWebKit/537.51.1 (KHTML, like Gecko) CriOS/30.0.1599.12 Mobile/11A465 Safari/8536.25"
    58.177.135.108 - - [19/Sep/2013:06:20:52 +0000] "-" 400 0 "-" "-"
    163.177.71.12 - - [19/Sep/2013:06:21:14 +0000] "HEAD / HTTP/1.1" 200 20 "-" "DNSPod-Monitor/1.0"
    ......
    
  3. 期望输出

    均为合法数据。

  4. 创建包名:com.easysir.etl2

  5. 创建LogBean类,用来记录日志数据中各数据字段:

    package com.easysir.etl2;
    
    public class LogBean {
        private String remote_addr;// 记录客户端的ip地址
        private String remote_user;// 记录客户端用户名称,忽略属性"-"
        private String time_local;// 记录访问时间与时区
        private String request;// 记录请求的url与http协议
        private String status;// 记录请求状态;成功是200
        private String body_bytes_sent;// 记录发送给客户端文件主体内容大小
        private String http_referer;// 用来记录从那个页面链接访问过来的
        private String http_user_agent;// 记录客户浏览器的相关信息
    
        private boolean valid = true;// 判断数据是否合法
    
        public String getRemote_addr() {
            return remote_addr;
        }
    
        public void setRemote_addr(String remote_addr) {
            this.remote_addr = remote_addr;
        }
    
        public String getRemote_user() {
            return remote_user;
        }
    
        public void setRemote_user(String remote_user) {
            this.remote_user = remote_user;
        }
    
        public String getTime_local() {
            return time_local;
        }
    
        public void setTime_local(String time_local) {
            this.time_local = time_local;
        }
    
        public String getRequest() {
            return request;
        }
    
        public void setRequest(String request) {
            this.request = request;
        }
    
        public String getStatus() {
            return status;
        }
    
        public void setStatus(String status) {
            this.status = status;
        }
    
        public String getBody_bytes_sent() {
            return body_bytes_sent;
        }
    
        public void setBody_bytes_sent(String body_bytes_sent) {
            this.body_bytes_sent = body_bytes_sent;
        }
    
        public String getHttp_referer() {
            return http_referer;
        }
    
        public void setHttp_referer(String http_referer) {
            this.http_referer = http_referer;
        }
    
        public String getHttp_user_agent() {
            return http_user_agent;
        }
    
        public void setHttp_user_agent(String http_user_agent) {
            this.http_user_agent = http_user_agent;
        }
    
        public boolean isValid() {
            return valid;
        }
    
        public void setValid(boolean valid) {
            this.valid = valid;
        }
    
        @Override
        public String toString() {
    
            StringBuilder sb = new StringBuilder();
            sb.append(this.valid);
            sb.append("\001").append(this.remote_addr);
            sb.append("\001").append(this.remote_user);
            sb.append("\001").append(this.time_local);
            sb.append("\001").append(this.request);
            sb.append("\001").append(this.status);
            sb.append("\001").append(this.body_bytes_sent);
            sb.append("\001").append(this.http_referer);
            sb.append("\001").append(this.http_user_agent);
    
            return sb.toString();
        }
    }
    
  6. 创建LogMapper类:

    package com.easysir.etl2;
    
    import org.apache.hadoop.io.LongWritable;
    import org.apache.hadoop.io.NullWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Mapper;
    
    import java.io.IOException;
    
    public class LogMapper extends Mapper<LongWritable, Text, Text, NullWritable>{
        Text k = new Text();
    
        @Override
        protected void map(LongWritable key, Text value, Context context)	throws IOException, InterruptedException {
    
            // 1 获取1行
            String line = value.toString();
    
            // 2 解析日志是否合法
            LogBean bean = parseLog(line);
    
            if (!bean.isValid()) {
                return;
            }
    
            k.set(bean.toString());
    
            // 3 输出
            context.write(k, NullWritable.get());
        }
    
        // 解析日志
        private LogBean parseLog(String line) {
    
            LogBean logBean = new LogBean();
    
            // 1 截取
            String[] fields = line.split(" ");
    
            if (fields.length > 11) {
    
                // 2封装数据
                logBean.setRemote_addr(fields[0]);
                logBean.setRemote_user(fields[1]);
                logBean.setTime_local(fields[3].substring(1));
                logBean.setRequest(fields[6]);
                logBean.setStatus(fields[8]);
                logBean.setBody_bytes_sent(fields[9]);
                logBean.setHttp_referer(fields[10]);
    
                if (fields.length > 12) {
                    logBean.setHttp_user_agent(fields[11] + " "+ fields[12]);
                }else {
                    logBean.setHttp_user_agent(fields[11]);
                }
    
                // 大于400,HTTP错误
                if (Integer.parseInt(logBean.getStatus()) >= 400) {
                    logBean.setValid(false);
                }
            }else {
                logBean.setValid(false);
            }
    
            return logBean;
        }
    }
    
  7. 创建LogDriver类:

    package com.easysir.etl2;
    
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.NullWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    
    public class LogDriver {
        public static void main(String[] args) throws Exception {
    
            // 输入输出路径需要根据自己电脑上实际的输入输出路径设置
            args = new String[] { "E:\\idea-workspace\\mrWordCount\\input\\web.log", "E:\\idea-workspace\\mrWordCount\\output" };
    
            // 1 获取job信息
            Configuration conf = new Configuration();
            Job job = Job.getInstance(conf);
    
            // 2 加载jar包
            job.setJarByClass(LogDriver.class);
    
            // 3 关联map
            job.setMapperClass(LogMapper.class);
    
            // 4 设置最终输出类型
            job.setOutputKeyClass(Text.class);
            job.setOutputValueClass(NullWritable.class);
    
            // 5 设置输入和输出路径
            FileInputFormat.setInputPaths(job, new Path(args[0]));
            FileOutputFormat.setOutputPath(job, new Path(args[1]));
    
            // 6 提交
            job.waitForCompletion(true);
        }
    }
    

你可能感兴趣的:(Hadoop学习笔记,大数据,hadoop,mapreduce,java)