- PECL(Positive Emitter-Coupled Logic)电平详解
美好的事情总会发生
电平标准接口电平嵌入式硬件硬件工程智能硬件
一、PECL电平的定义与核心特性PECL(正射极耦合逻辑)是一种基于射极耦合逻辑(ECL)技术的高速差分信号标准,采用正电源供电(如5V或3.3V)。其核心特性包括高速传输、低噪声、强抗干扰能力,专为高频、高可靠性场景设计。1.电气特性供电电压:典型值:VCC=5V、3.3V(部分器件支持更宽范围)。电平范围:差分摆幅:约800mV(峰峰值),单端摆幅±400mV。共模电压:VCC-1.3V(如5
- Deepseek:物理神经网络PINN入门教程
天一生水water
神经网络人工智能深度学习
一、物理信息网络(PINN)的概念与原理1.定义与来源物理信息网络(Physics-InformedNeuralNetworks,PINN)是一种将物理定律(如偏微分方程、守恒定律等)嵌入神经网络训练过程的深度学习方法。其核心思想是通过神经网络同时拟合观测数据并满足物理约束,从而解决传统数值方法难以处理的高维、噪声数据或复杂边界条件问题。来源:PINN起源于对传统数值方法局限性的改进需求(如网格生
- 从基础到实践(十四):LDO的由来与内部结构解析
硬件进化论
单片机嵌入式硬件压力测试集成测试安全性测试
LDO(低压差线性稳压器)是电子系统的“电压守门员”,能在极低压差下(如0.2V)稳定输出纯净电压,榨干电池电量延长续航,避免传统稳压器因压差不足宕机。其无高频噪声的特性,为传感器、射频模块等精密电路提供“无污染”电源,同时集成过流、过热保护,兼顾安全与高效,是便携设备和多电压系统中不可替代的“能源心脏”。一、LDO是什么?LDO全称低压差线性稳压器(LowDropoutRegulator),是一
- 基于多模态大模型的不完整多组学数据特征选择策略
m0_65156252
人工智能
基于多模态大模型的不完整多组学数据特征选择策略是当前生物信息学和精准医学领域的一个前沿问题。在多组学数据中,通常包括不同层次的生物信息(如基因组、转录组、蛋白质组、代谢组等),这些数据通常存在缺失、噪声或不一致的情况。因此,如何有效地在这些不完整的数据中进行特征选择,是实现精确疾病预测和个性化治疗的关键。结合多模态大模型(如自监督学习、图神经网络、Transformer等)可以有效解决这一问题。以
- 神经网络机器学习中说的过拟合是什么意思
yuanpan
机器学习神经网络人工智能
在神经网络和机器学习中,过拟合(Overfitting)是指模型在训练数据上表现非常好,但在未见过的测试数据上表现较差的现象。换句话说,模型过度学习了训练数据中的细节和噪声,导致其泛化能力(Generalization)下降,无法很好地适应新数据。过拟合的表现训练误差很低,但测试误差很高:模型在训练集上的准确率非常高,但在测试集上的准确率却显著下降。模型过于复杂:模型学习了训练数据中的噪声或不相关
- NLP常见任务专题介绍(3)-垂直领域的聊天机器人搭建详细教程
AI专题精讲
大模型专题系列自然语言处理机器人人工智能
一、整体流程构建垂直领域的聊天机器人需要结合特定行业的需求,采用自然语言处理和机器学习等技术。以下是一个典型的构建流程及相关技术实现:需求分析:明确机器人需要解决的问题范围和功能,例如客户服务、信息查询等。数据收集与预处理:数据收集:从行业相关的网站、论坛、数据库等渠道获取大量专业领域的文本数据。数据清洗:去除广告、无意义回复等噪声数据,确保数据质量。数据标注:对文本进行意图识别和实体识别的标注,
- 【ISP】ISP的pipeline的几种关键算法
白码思
算法
ISP的pipeline中涉及各种图像处理中的关键算法,比如涉及降噪、HDR合成、色调映射、去马赛克、锐化、去雾等任务。下面会出几期文章会逐个详细解释它们的原理、用途及其在图像处理流程中的作用。1.RawNR(RawNoiseReduction,RAW降噪)用途:对RAW图像进行噪声抑制,减少感光元件(CMOS/CCD)带来的噪声,提高信噪比(SNR)。原理:RAW图像是图像传感器采集的未处理数据
- PCL 点云迭代加权最小二乘法拟合平面(抑制噪声)
大鱼BIGFISH
点云进阶最小二乘法平面C++PCL迭代加权
文章目录一、简介二、实现代码三、实现效果参考资料一、简介受到之前博客的启发(Matlab点云最小二乘法拟合平面(剔除噪声)),我们不仅可以通过剔除一些异常点来拟合更为合适的平面,而且还可以在这个过程中对每个点进行加权来抑制噪声点,双管齐下也可以使得算法更具鲁棒性,并拟合出合适的平面,具体过程如下所示:1、首先使用加权的最小二乘法拟合一个平面系数的初值。2、计算所有有效点到拟合平面的距离did_i
- ISP(图像信号处理)算法概述、工作原理、架构、处理流程
2401_87555493
接口隔离原则信号处理算法
ISP处理流程:Bayer、黑电平补偿(blacklevelcompensation)、镜头矫正(lensshadingcorrection)、坏像素矫正(badpixelcorrection)、颜色插值(demosaic)、Bayer噪声去除、白平衡(AWB)矫正、色彩矫正(colorcorrection)、gamma矫正、色彩空间转换(RGB转换为YUV)、在YUV色彩空间上彩噪去除与边缘加强
- 调整PWM频率与死区时间可以解决电机噪声或共振问题
被风吹走的裤子
两轮电动车stm32单片机mcu
在调试一款电机测试打曲线时,加载至母线限流值附近且在低速段时,出现共振的声音,通过调整PWM频率与死区时间优化掉了共振问题。分析总结下原因。一、PWM频率调整的作用降低可听噪声原理:PWM频率低于20kHz时,开关噪声会进入人耳可听范围(20Hz-20kHz),导致电机发出“嗡嗡”声。将频率提高到20kHz以上,噪声频率超出人耳感知范围,从而消除可听噪声。案例:在无人机电机控制中,将PWM频率从8
- 在整个大模型LoRA微调中,哪些方法可以提升和优化模型训练后推理效果?
玩人工智能的辣条哥
人工智能人工智能LoRA微调
环境:LoRA微调问题描述:在整个大模型LoRA微调中,哪些方法可以提升和优化模型训练后推理效果?解决方案:在LoRA(Low-RankAdaptation)微调大模型后,提升和优化推理效果可以从以下多维度策略入手,涵盖数据、模型架构、训练策略和后处理技术等方面:1.数据优化数据质量与多样性确保微调数据覆盖目标场景的多样性,避免分布偏差。加入领域相关的高质量数据,清洗噪声数据(如重复、矛盾样本)。
- 卡尔曼滤波算法从理论到实践:在STM32中的嵌入式实现
DOMINICHZL
STM32算法stm32嵌入式硬件
摘要:卡尔曼滤波(KalmanFilter)是传感器数据融合领域的经典算法,在姿态解算、导航定位等嵌入式场景中广泛应用。本文将从公式推导、代码实现、参数调试三个维度深入解析卡尔曼滤波,并给出基于STM32硬件的完整工程案例。一、卡尔曼滤波核心思想1.1什么是卡尔曼滤波?卡尔曼滤波是一种最优递归估计算法,通过融合预测值(系统模型)与观测值(传感器数据),在噪声干扰环境下实现对系统状态的动态估计。其核
- CV:傅里叶变换
壹十壹
CV人工智能计算机视觉python
图像中的傅里叶变换主要指将图像从空间域转换到频域的过程。通过傅里叶变换,我们可以将图像看作是不同频率正弦波的叠加,这有助于分析图像的周期性特征、纹理和噪声等信息。主要概念频域表示幅值谱(MagnitudeSpectrum):反映了各个频率成分的能量或强度。低频部分一般对应图像中的整体轮廓和大致结构,高频部分则反映图像的边缘、细节和噪声。相位谱(PhaseSpectrum):包含了图像的空间位置信息
- 目标检测项目
sho_re
神经网络人工智能pytorch目标检测
·识别图片中有哪些物体并且找到物体的存在位置多任务:位置+类别目标种类与数量繁多的问题目标尺度不均的问题遮挡、噪声等外部环境干扰VOC数据集:PASCALVOC挑战赛(ThePASCALVisualObjectClasses)是一个世界级的计算机视觉挑战赛。4大类,20小类VOC2007:9963图片/24640目标VOC2012:23080图片/54900目标·COCO数据集:起源于微软2014
- 信号处理应用:电力系统中的信号处理_(10).电力系统信号处理中的现代滤波器设计
kkchenkx
信号处理技术仿真模拟信号处理大数据
电力系统信号处理中的现代滤波器设计1.引言在电力系统中,信号处理技术被广泛应用于监测、保护、控制和优化等多个方面。现代滤波器设计是信号处理技术中的重要组成部分,它能够有效地去除噪声、提取有用信号、提高信号质量,从而确保电力系统的稳定运行和高效性能。本节将介绍现代滤波器设计的基本概念、分类、设计方法及其在电力系统中的应用。2.滤波器的基本概念滤波器是一种信号处理设备,用于从输入信号中提取或抑制特定频
- 朗之万动力学(Langevin dynamics)
xwhking
算法
朗之万动力学(Langevindynamics)是一种模拟经典粒子运动的方法,常用于物理、化学和材料科学等领域。它是由法国物理学家保罗·朗之万(PaulLangevin)于1908年提出的,用于描述布朗运动,即微小粒子在流体中的随机运动。在朗之万动力学中,粒子的运动不仅受到经典力学中描述的确定性力的作用(如势能场产生的力),还受到一种随机力(噪声项)和阻力(摩擦项)的作用。这种随机力和阻力项用来模
- CMOS电平标准详解
美好的事情总会发生
接口接口电平电平标准单片机嵌入式硬件硬件工程
一、CMOS电平标准的定义CMOS(ComplementaryMetal-Oxide-Semiconductor,互补金属氧化物半导体)电平标准是一种基于CMOS工艺的数字逻辑电平规范,用于定义逻辑高电平(HIGH)和低电平(LOW)的电压范围。其核心特点是低功耗、高噪声容限和宽工作电压范围,已成为现代数字电路设计的通用标准。二、CMOS电平标准的核心特性电压范围典型工作电压:5VCMOS:传统标
- AF3 block_delete_msa函数解读
qq_27390023
深度学习人工智能python生物信息学pytorch
AlphaFold3data_transforms模块的block_delete_msa函数用于从MSA(多序列比对)中删除多个块(block)序列,以模拟MSA数据的缺失或噪声。这在训练时可能用于数据增强(防止模型对MSA过度依赖)。推理(inference)时不会使用,因为完整MSA对预测准确性很重要。源代码:#Notusedininference@curry1defblock_delete_
- chatgpt赋能python:Python生成噪声:让你的声音不再单调无味
test100t
ChatGptpythonchatgptnumpy计算机
Python生成噪声:让你的声音不再单调无味如果你的项目需要制作音效或者游戏开发,你可能需要一些噪声来为场景增添真实感。而在Python中,生成各种形态的噪声将会变得非常容易。这篇文章将会探讨Python中如何生成多种类型的噪声,并且如何利用它们来让你的项目变得更加动态和生动。什么是噪声在音效和图形处理中,噪声是一种随机产生的信号,通常被用来模拟自然事件中的随机变化。在图像处理中,噪声常常被用来为
- 推荐项目:Python中的高性能Perlin噪声库——`noise`
毛彤影
推荐项目:Python中的高性能Perlin噪声库——noise项目地址:https://gitcode.com/gh_mirrors/nois/noise1、项目介绍在Python编程中寻找一种简单且快速的方法来生成Perlin噪声吗?那么noise库就是你的理想之选。这个开源项目由CaseyDuncan开发,提供了一个强大的工具集,用于在Python程序中轻松实现Perlin噪声的生成,适用于
- 扩散模型中三种加入条件的方式:Vanilla Guidance,Classifier Guidance 以及 Classifier-Free Guidance
AIGC_ZY
DiffusionModels机器学习计算机视觉深度学习
扩散模型主要包括两个过程:前向扩散过程和反向去噪过程。前向过程逐渐给数据添加噪声,直到数据变成纯噪声;反向过程则是学习如何从噪声中逐步恢复出原始数据。在生成过程中,模型从一个随机噪声开始,通过多次迭代去噪,最终生成有意义的数据,比如图像。这时候,如果需要生成特定类别的数据,比如生成猫的图像而不是狗的,就需要加入条件引导,控制生成的方向。这就是条件扩散模型的作用。VanillaGuidance、Cl
- 基于深度学习的视频修复
SEU-WYL
深度学习dnn深度学习音视频人工智能dnn
基于深度学习的视频修复是一种利用深度学习技术对视频进行处理和优化,以修复视频中的损坏部分、提升视频质量、去除噪声和增强视觉效果的方法。这种技术在电影修复、视频编辑、监控视频增强、自动驾驶和虚拟现实等多个领域具有广泛应用。以下是关于这一领域的系统介绍:1.任务和目标视频修复的主要任务和目标包括:去噪声:去除视频中的噪声,提升视频的视觉质量。去模糊:减少或消除视频中的模糊区域,使视频更清晰。去伪影:消
- 可视化学习:如何使用后期处理通道增强图像效果
前言大家好,本文分享的是如何使用后期处理通道增强图像效果,通过前面几篇文章,我们了解了一些动态生成纹理的方法,比如符号距离场SDF、基于参数方程生成图案、基于噪声生成纹理,等等。这些生成纹理的技术有相似的地方,就是根据片元的纹理坐标,对片元着色,直接生成纹理。因为GPU是并行渲染的,每个像素的着色器程序是并行执行的,这样的渲染很高效。但是在实际需求中,有时我们计算片元色值时,需要依赖周围像素点或者
- LabVIEW基于双通道FFT共轭相乘的噪声抑制
LabVIEW开发
LabVIEW知识LabVIEW参考程序LabVIEW功能LabVIEW伺服阀
对于双通道采集的含噪信号,通过FFT获取复数频谱后,对第二通道频谱取共轭并与第一通道频谱相乘,理论上可增强相关信号成分并抑制非相关噪声。此方法适用于通道间信号高度相关、噪声独立的场景(如共模干扰抑制)。以下为LabVIEW实现方案及案例验证。实现原理与步骤1.核心数学推导设两通道信号为:通道1:S1(t)=Signal(t)+Noise1(t)通道2:S2(t)=Signal(t)+Noise2(
- 品致差分探头与光隔离差分探头的区别
PinTech示波器探头
电流传感器电流探头高频电流探头电流钳
差分探头与光隔离差分探头在电子测量领域都是重要的工具,但它们在工作原理、应用场景以及性能特点上存在显著的差异。差分探头主要用于测量两个输入端之间的电压差。它通过内部电路将两个输入端的信号进行相减,从而得到它们的差值。差分探头能够抑制共模噪声,提高信号的信噪比;光隔离差分探头采用电-光转换技术,将电信号转换为光信号,通过光纤传输,然后在另一端将光信号转换回电信号。这种完全的电气隔离提供了极高的安全性
- 如何维护和应用高压隔离探头-Pintech品致
PinTech示波器探头
高频电流探头差分探头示波器科技
测量时使用者可以进入测试模式并调整偏置电压,如果探头在长期使用后失去平衡,将偏差压力调整到零;电子触摸按钮使用寿命更长;声光报警功能,可手动关闭声报警功能,更人性化USB电源方便灵活的电源接口;自动保存功能,防止用户停电后重复操作。高压隔离探头是一种具有浮动测量功能的探头,具有良好的共模噪声抑制能力、高输入阻抗、低输入电容、高速准确测量差异电压信号。可广泛应用于开关电源、变频器、电子镇流器、变频家
- 机器学习-随机森林解析
Mr终游
机器学习机器学习随机森林人工智能
目录一、.随机森林的思想二、随机森林构建步骤1.自助采样2.特征随机选择3构建决策树4.集成预测三.随机森林的关键优势**(1)减少过拟合****(2)高效并行化****(3)特征重要性评估****(4)耐抗噪声**四.随机森林的优缺点优点缺点五.参数调优(以scikit-learn为例)波士顿房价预测一、.随机森林的思想1.通过组成多个弱学习器(决策树)形成一个学习器2.多样性增强:每颗决策树通
- 【图像去噪】基础知识之加噪 | 给图像加噪的若干种方式,包括加高斯白噪声(AWGN)、泊松-高斯噪声、模拟真实噪声(SIDD、DND)等
十小大
人工智能计算机视觉深度学习图像处理图像去噪pythonpytorch
请先看【专栏介绍文章】:【图像去噪(ImageDenoising)】关于【图像去噪】专栏的相关说明,包含适配人群、专栏简介、专栏亮点、阅读方法、定价理由、品质承诺、关于更新、去噪概述、文章目录、资料汇总、问题汇总(更新中)文章目录前言加高斯噪声(AWGN)在numpy上加在Tensor上加完整代码加其他噪声(模拟真实世界的噪声)加随机散粒噪声和真实噪声(Possion-Gaussian)加SIDD
- 三维模型点云化工具V1.0使用介绍:将三维模型进行点云化生成
是刃小木啦~
pythonpyqt工业软件软件工程
三维软件绘制的三维模型导入之后,可以生成点云,用于替代实际的激光扫描过程,当然,主要是用于点云算法的测试和验证,没法真正模拟扫描的效果,因为太过于理想化了。功能介绍将三维软件绘制的三维模型变成点云,并且支持不同的点云密度。支持添加不同的噪声,高斯噪声比较柔和,随机噪声比较明显。功能视频介绍三维模型点云化工具V1.0使用介绍:将三维模型进行点云化生成,支持不同的分辨率,支持添加噪声下载地址三维模型点
- 完整集合经验模态分解(CEEMD)详解
DuHz
人工智能算法机器学习信号处理信息与通信
完整集合经验模态分解(CEEMD)详解目录前言从EMD到EEMD再到CEEMDEMD(经验模态分解)回顾EEMD(集合经验模态分解)的改进与不足CEEMD(完整集合经验模态分解)的原理噪声对(noisepairs)与对称性CEEMD的核心数学表达式与EEMD的主要区别CEEMD算法流程与公式CEEMD分解过程中的详细推导正负噪声加法及EMD展开IMF的最终计算公式残差的平均处理CEEMD的优点与局
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不