- 自动驾驶系列—颠覆未来驾驶:深入解析自动驾驶线控转向系统技术
学步_技术
自动驾驶自动驾驶人工智能机器学习线控系统
欢迎来到我的技术小筑,一个专为技术探索者打造的交流空间。在这里,我们不仅分享代码的智慧,还探讨技术的深度与广度。无论您是资深开发者还是技术新手,这里都有一片属于您的天空。让我们在知识的海洋中一起航行,共同成长,探索技术的无限可能。探索专栏:学步_技术的首页——持续学习,不断进步,让学习成为我们共同的习惯,让总结成为我们前进的动力。技术导航:人工智能:深入探讨人工智能领域核心技术。自动驾驶:分享自动
- 根据deepseek模型微调训练自动驾驶模型及数据集的思路
ywfwyht
自动驾驶深度学习人工智能自动驾驶人工智能机器学习
以下是使用DeepSeek模型微调训练自动驾驶模型的详细步骤和代码示例。本流程假设你已有自动驾驶领域的数据集(如驾驶指令、传感器数据等),并基于PyTorch框架实现。Step1:环境准备#安装依赖库pipinstalltorchtransformersdatasetsnumpypandasStep2:数据准备假设数据集格式为JSON,包含输入文本(传感器/场景描述)和输出控制指令://data/
- 自动驾驶---Motion Planning之参考线Path平滑
智能汽车人
自动驾驶人工智能
1背景有了由lane_segment插值得到的粗糙参考线,这种参考线是无法输出给下游使用的,需要进一步的处理使得参考线更加平滑,才能供下游控制模块使用。Apollo中共有三种参考线平滑算法,分别为:1.QpSplineSmoother2.SpiralReferenceLineSmoother3.DiscretePointsSmoother目前Apollo中默认配置为最后一种,基于离散点的平滑。这种
- 自动驾驶---Motion Planning之LaneChange
智能汽车人
自动驾驶人工智能
1背景在Apollo中,有比较多的Decider(决策器),上篇博客《自动驾驶---MotionPlanning之Decider》中笔者也大概介绍了每个Deicder的作用。本篇博客笔者主要介绍换道的决策内容,因为在自动驾驶中(严格意义上来讲,目前还属于辅助驾驶),变道的灵活性是用户评价该功能是否好用很重要的一部分,变道迟缓或者激进都是不好的体验,所以本篇博客会结合Apollo中的LaneChan
- 一文带你了解人工智能:现状、应用、变革及未来展望
空青726
人工智能chatgptai大数据机器学习深度学习创业创新
近年来,人工智能(AI)的发展势头迅猛,它已经渗透到了我们生活的方方面面。从智能手机的语音助手到自动驾驶汽车,从智能家居到医疗诊断,AI正在改变着我们的生活方式。本文将结合时事,为大家介绍当前人工智能的发展形势、在生活中的应用、人工智能的变革以及未来的发展方向。一、人工智能的发展形势1.深度学习:深度学习是当前AI领域的热门话题。通过模拟人脑神经元之间的相互作用,深度学习算法能够从大量数据中提取出
- 基于A*算法与贝塞尔曲线的路径规划与可视化:从栅格地图到平滑路径生成
机器懒得学习
pygamepython
引言在机器人导航、自动驾驶和游戏开发等领域,路径规划是一个核心问题。如何高效地找到从起点到终点的最优路径,并且确保路径的平滑性和安全性,是许多应用场景中的关键挑战。本文将介绍一种结合A算法和贝塞尔曲线的路径规划方法,并通过Pygame实现可视化。我们将从栅格地图的加载与处理开始,逐步讲解A算法的实现、贝塞尔曲线的生成,以及如何通过鼠标交互实现动态路径规划。通过本文,你将掌握如何在实际项目中应用这些
- 《DeepSeek Janus Pro 7B:多模态人工智能大模型部署全攻略》
空云风语
神经网络人工智能深度学习人工智能
《DeepSeekJanusPro7B:多模态人工智能大模型部署全攻略》引言:开启多模态AI新世界在科技飞速发展的当下,多模态AI已成为人工智能领域中最耀眼的明星,正以前所未有的速度改变着我们的生活与工作方式。从智能语音助手到图像识别系统,从自动驾驶汽车到智能医疗诊断,多模态AI的身影无处不在,它让机器能够理解和处理多种类型的信息,如文本、图像、音频等,从而实现更加智能、高效的交互。DeepSee
- 优化算法全景解析:从梯度下降到群体智能
welcome_123_
算法python人工智能
一、引言:为什么需要优化算法?在AlphaGo击败人类围棋冠军的背后,在特斯拉自动驾驶系统实时决策的瞬间,在推荐系统精准推送内容的过程中,优化算法始终是推动这些技术落地的核心引擎。无论是机器学习模型的训练,还是复杂系统的参数调优,优化算法的本质是:在给定的约束条件下,找到使目标函数最优的解。本文将深入解析优化算法的核心原理、经典方法、现代进展及实战应用,助你全面掌握这一技术利器。二、优化算法分类图
- 基于深度学习YOLOv8的海洋动物检测系统(Python+PySide6界面+训练代码)
深度学习&目标检测实战项目
深度学习YOLOpython目标检测人工智能开发语言
引言近年来,计算机视觉技术在各行各业中得到了广泛的应用,特别是在智能监控、自动驾驶、医疗诊断等领域。深度学习,尤其是卷积神经网络(CNN)的出现,极大地提高了计算机处理图像和视频的能力。在这一领域,YOLO(YouOnlyLookOnce)系列模型以其高效且准确的目标检测能力,成为了当下最为流行的深度学习模型之一。在海洋生物保护、海洋环境监测等应用中,快速识别和检测海洋动物种类对于科学研究和保护工
- 无人机技术全解析:从军事靶机到低空经济新引擎
UAV_ckesc
无人机
一、无人机定义与监管体系无人机(UnmannedAerialVehicle,UAV)是指通过无线电遥控设备或自主程序控制装置操纵的无人驾驶飞行器。其核心特征包括:无驾驶舱设计:搭载自动驾驶仪、程序控制装置等设备实现自主飞行分级管理体系:中国民航局将116kg以上无人机及4600m³以上飞艇纳入融合空域管理,微型航拍器由行业协会自治二、百年发展历程1.军事起源阶段(1914-1990)1914年:英
- 【如何在Apollo中利用JSON/XML/config来减少代码量】
勾魂凉皮
jsonxml
Apollo(百度的自动驾驶开源平台)是一个复杂的大型项目,涉及多个模块的协同工作,如感知、规划、控制、定位等。在这样的大型项目中,减少代码量有助于提高代码的可维护性、可读性和开发效率。使用JSON和XML等配置文件,可以将很多与代码逻辑无关的配置和行为控制从代码中分离出来,从而减少代码量和复杂性。以下是一些Apollo中可以应用的策略,来利用JSON/XML配置文件和其他技术来减少代码量和复杂性
- 一个AI应用的开发、上线流程解析
終不似少年遊*
人工智能ai应用ckptonnx模型文件部署推理
目录1.模型文件格式1.1CheckPoint(ckpt)文件格式1.2.pth文件格式1.3.mindir文件格式1.4.onnx文件格式2.推理(Inference)2.1.pth(PyTorch模型格式)2.2.mindir(MindSpore模型格式)2.3.onnx(开放神经网络交换格式)2.4实际例子:自动驾驶系统中的推理模块3.APP与网页4.运维中心与本地部署SDK5.RAG(Re
- 自动驾驶软件:Tesla Autopilot二次开发_18.未来趋势与发展方向
zhubeibei168
电动汽车自动驾驶opencv人工智能电动汽车
18.未来趋势与发展方向未来的自动驾驶技术将不断演进,特斯拉的Autopilot系统作为行业领先的技术,也在不断地进行改进和创新。本节将探讨自动驾驶软件领域的未来趋势与发展方向,包括技术进步、法规变化、市场接受度和用户体验等方面。我们将结合特斯拉Autopilot的最新进展,分析未来可能出现的技术和应用。18.1技术进步18.1.1传感器技术的改进传感器是自动驾驶系统的关键组件,未来的传感器技术将
- 华为 ADS 3.0 与特斯拉 FSD V12:自动驾驶技术的巅峰对决与未来展望
中科宁图
华为自动驾驶人工智能
一、华为ADS3.0:多传感器融合的卓越代表(一)硬件与技术特色华为ADS3.0智能驾驶系统构建了全面的全息感知体系,融合激光雷达、高清摄像头、毫米波雷达、超声波传感器等多种设备。激光雷达实现环境三维重建和精确测距,在恶劣条件下仍能准确捕捉物体信息;高分辨率摄像头获取视觉信息;毫米波雷达在极端天气下强化对移动物体探测;超声波传感器辅助近距离障碍物检测。GOD网络融合处理多传感器数据,为决策提供坚实
- 自动驾驶感知系统配置分析——以“8摄像头+1毫米波雷达+12超声波雷达”为例
空间机器人
自动驾驶人工智能机器学习
自动驾驶感知系统配置分析——以“8摄像头+1毫米波雷达+12超声波雷达”为例1.引言自动驾驶系统依赖于传感器来感知周围环境,并基于此做出实时决策。不同类型的传感器各自有不同的特性,能够应对不同的场景和环境条件。摄像头、毫米波雷达、超声波雷达的组合能够在视觉、距离、速度和障碍物感知等方面提供全面的支持。本章节将详细介绍“8摄像头+1毫米波雷达+12超声波雷达”配置的设计思路、优势、各传感器的参数,以
- AUTOSAR从入门到精通-【自动驾驶】高精地图(三)
格图素书
人工智能算法机器学习
目录前言算法原理高精地图发展历史A.数字地图B.增强型数字地图C.高精地图D.可扩展地图高清地图基础知识TopologicalRepresentationGeometricRepresentationSemanticRepresentationDynamicElementsFeature-BasedMapLayers自动驾驶产业与地图1.1自动驾驶技术1.2地图在自动驾驶中的作用1.3地图的层级1
- 第二章:9.5 多个输出的分类
望云山190
分类数据挖掘人工智能
多标签分类问题多标签分类问题是一种特殊的分类问题,其中每个输入样本可以同时属于多个类别。这与单标签分类问题不同,在单标签分类问题中,每个输入样本只能属于一个类别。例如,在自动驾驶汽车的场景中,一张图像可能同时包含汽车、公交车和行人,因此在这种情况下,每个图像可以有多个相关的标签。构建多标签分类神经网络的方法方法一:独立训练多个神经网络一种方法是将多标签分类问题分解为多个独立的二分类问题。具体来说,
- AI Agent智能应用从0到1定制开发Langchain+LLM全流程解决方案与落地实战
AI知识分享官
人工智能langchain算法数据挖掘计算机视觉机器学习产品经理
大模型微调实战:精通、指令微调、开源大模型微调、对齐与垂直领域应用29套AI全栈大模型项目实战,人工智能视频课程-多模态大模型,微调技术训练营,大模型多场景实战,AI图像处理,AI量化投资,OPenCV视觉处理,机器学习,Pytorch深度学习,推荐系统,自动驾驶,训练私有大模型,LLM大语言模型,大模型多场景实战,Agent智能应用,AIGC实战落地,ChatGPT虚拟数字人,Djourney智
- 自动驾驶技术的未来趋势与挑战分析
智能计算研究中心
其他
内容概要自动驾驶技术自诞生以来经历了多个发展阶段。最初的研究集中在感知和控制系统的基础构建,随后进入了数据处理和算法的优化阶段,如今,随着人工智能和机器学习技术的快速应用,自动驾驶行业正处于一个前所未有的迅猛发展期。当前,行业内涌现出多种解决方案,各大汽车制造商与科技公司纷纷加大投入,推动这一领域的技术进步。市场需求不断增加,为自动驾驶技术注入活力。城市交通拥堵、环境污染等问题促使人们寻求更加智能
- 如何从零构建具身智能AI系统?
硅基创想家
AI-人工智能与大模型人工智能具身职能AI智能体
通过这份循序渐进的指南,学习构建能够独立感知、推理和行动的自主AI系统。在人工智能领域,具身智能AI系统正在重新定义自动化和决策流程。这些系统旨在自主运行,模仿人类的推理和行动能力。从自动驾驶汽车到智能虚拟助手,具身智能AI系统正在变革各个行业。在本指南中,我们将详细拆解从零构建具身智能AI系统的过程,涵盖关键组件、工具以及逐步指导,助你开启这一旅程。一、理解具身智能AI系统具身智能AI系统是一种
- AI赋能前端开发:解决问题能力的跃迁
前端
近年来,人工智能(AI)技术蓬勃发展,深刻地改变着各行各业的工作方式。从自动驾驶到医疗诊断,AI的触角几乎延伸到了社会的每一个角落。而作为互联网时代最前沿的技术领域之一,前端开发也正在经历着AI带来的深刻变革。本文将探讨AI如何提升前端开发人员的分析和解决问题的能力,并最终实现开发效率的显著提升。我们将会重点关注AI写代码工具如何帮助开发者克服挑战。前端开发的痛点与挑战传统的前端开发常常面临诸多挑
- 天神之眼vs华为智驾
天机️灵韵
物联网人工智能人工智能具身智能物联网
“天神之眼”和“华为智驾”分别是比亚迪和华为在智能驾驶领域推出的技术方案,两者均代表了国内顶尖的自动驾驶技术水平,但在技术路线、功能侧重和生态布局上存在差异。以下是两者的对比分析:1.技术路线比亚迪天神之眼:基于自研算法:依托比亚迪自主研发的BOS(比亚迪操作系统)和车载计算平台,强调“车端感知+车控”的深度整合。全栈自研:从感知硬件到决策算法均为比亚迪自研,适配其e平台3.0的电动化架构。渐进式
- 智能驾驶中的 感知 模块介绍
算法自动驾驶
在自动驾驶系统中,感知技术是核心基础之一。感知技术为车辆提供环境信息,使其能够实现对周围环境的理解、分析与决策,从而保证安全性和高效性。通常大家对感知的介绍停留在“眼睛”的作用,但这样的解释太宽泛了例如感知到底是什么?由哪些模块组成?输入输出有什么含义?数据怎么流转的?会经历哪些硬件模块?下面来简单看一下。现在大家不都是在提倡感知规控“端到端”吗?为什么还要拆开介绍?个人理解:完全端到端还有很长一
- AI时代的前端工程师:机遇与挑战
前端
在飞速发展的科技浪潮中,人工智能(AI)技术正以前所未有的速度改变着我们的生活。从智能家居到自动驾驶,AI的触角已经伸向各行各业,而作为互联网应用的基石——前端开发领域,也正经历着AI带来的深刻变革。本文将探讨AI技术对前端工程师的影响,并分析在AI时代,前端工程师面临的机遇与挑战,以及未来的发展方向。我们关注的重点是AI写代码工具如何改变这个行业。AI对传统前端开发工作的冲击近年来,各种AI写代
- DeepSeek 与网络安全:AI 驱动的智能防御
一ge科研小菜鸡
人工智能运维网络
个人主页:一ge科研小菜鸡-CSDN博客期待您的关注1.引言随着人工智能(AI)的快速发展,深度学习技术正渗透到多个领域,从医疗诊断到自动驾驶,再到金融风险控制,AI以其强大的计算能力和数据分析能力改变着传统行业。而在网络安全领域,面对日益复杂和高频率的网络攻击,传统的防御体系正遭遇前所未有的挑战。攻击者利用自动化工具、社会工程学和新型攻击策略,使得传统基于规则和特征匹配的安全手段逐渐失效。在这样
- AI赋能人力资源:效率提升新纪元
前端
在当今时代,人工智能(AI)技术正以前所未有的速度改变着各行各业。从自动驾驶到智能医疗,AI的触角已经深入到生活的方方面面。而人力资源行业,作为企业发展的基石,也正在经历着AI带来的深刻变革。例如,许多公司已经开始使用AI写代码工具来辅助招聘流程,实现智能匹配候选人,大大提高了效率。然而,在AI浪潮下,如何进一步提升人力资源的整体效率,仍然是一个值得深入探讨的问题。效率提升的瓶颈:传统人力资源的痛
- 2025最新主流深度学习算法全解析
lucky_syq
AI深度学习算法人工智能
深度学习:开启智能时代的钥匙在当今数字化时代,深度学习无疑是人工智能领域中最为耀眼的明星。它如同一把神奇的钥匙,开启了智能时代的大门,让计算机从简单的数据处理迈向了复杂的智能决策。深度学习通过构建具有多个层次的神经网络模型,使计算机能够自动从大量数据中学习到复杂的模式和特征,从而实现对数据的分类、预测、生成等任务。从语音助手到自动驾驶,从图像识别到自然语言处理,深度学习的应用无处不在,深刻地改变着
- 深度学习入门:搭建你的第一个神经网络
Evaporator Core
人工智能深度学习Python开发经验深度学习python神经网络
在当今数字化时代,深度学习正以前所未有的速度改变着我们的生活。从语音助手到自动驾驶汽车,从图像识别到自然语言处理,深度学习的应用无处不在。而Python作为一门简洁而强大的编程语言,成为了深度学习领域最受欢迎的工具之一。今天,我们将一起踏上深度学习的旅程,搭建你的第一个神经网络。一、深度学习的魅力深度学习是机器学习的一个分支,它通过模拟人脑的神经网络结构,让计算机能够自动从大量数据中学习规律和特征
- 均薪23W还缺人,FPGA工程师到底有多重要?
博览鸿蒙
FPGAfpga开发
近两年,随着FPGA行业的快速发展,FPGA工程师的需求量持续增长。FPGA技术在通信、人工智能、自动驾驶、数据中心等领域的广泛应用,使得这一岗位变得尤为重要。尤其是在高性能计算、边缘计算等场景下,FPGA凭借其高并行计算能力和灵活性,成为不可或缺的技术方案。FPGA工程师的核心职责FPGA工程师主要负责FPGA的开发、调试和优化,具体包括:逻辑设计与实现:使用Verilog/VHDL等硬件描述语
- 计算机视觉算法:开启智能视觉新时代
2501_90175811
计算机视觉
在当今数字化时代,计算机视觉算法正以前所未有的速度改变着我们的生活和工作方式。从人脸识别解锁手机到自动驾驶汽车感知周围环境,计算机视觉算法在众多领域发挥着至关重要的作用。计算机视觉算法旨在让计算机能够“看”和“理解”图像或视频中的内容,就像人类的视觉系统一样。它涉及到多个复杂的技术领域,包括图像处理、模式识别、机器学习等。核心算法与技术图像预处理:这是计算机视觉的第一步,主要包括图像的降噪、增强对
- Java序列化进阶篇
g21121
java序列化
1.transient
类一旦实现了Serializable 接口即被声明为可序列化,然而某些情况下并不是所有的属性都需要序列化,想要人为的去阻止这些属性被序列化,就需要用到transient 关键字。
- escape()、encodeURI()、encodeURIComponent()区别详解
aigo
JavaScriptWeb
原文:http://blog.sina.com.cn/s/blog_4586764e0101khi0.html
JavaScript中有三个可以对字符串编码的函数,分别是: escape,encodeURI,encodeURIComponent,相应3个解码函数:,decodeURI,decodeURIComponent 。
下面简单介绍一下它们的区别
1 escape()函
- ArcgisEngine实现对地图的放大、缩小和平移
Cb123456
添加矢量数据对地图的放大、缩小和平移Engine
ArcgisEngine实现对地图的放大、缩小和平移:
个人觉得是平移,不过网上的都是漫游,通俗的说就是把一个地图对象从一边拉到另一边而已。就看人说话吧.
具体实现:
一、引入命名空间
using ESRI.ArcGIS.Geometry;
using ESRI.ArcGIS.Controls;
二、代码实现.
- Java集合框架概述
天子之骄
Java集合框架概述
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- 旗正4.0页面跳转传值问题
何必如此
javajsp
跳转和成功提示
a) 成功字段非空forward
成功字段非空forward,不会弹出成功字段,为jsp转发,页面能超链接传值,传输变量时需要拼接。接拼接方式list.jsp?test="+strweightUnit+"或list.jsp?test="+weightUnit+&qu
- 全网唯一:移动互联网服务器端开发课程
cocos2d-x小菜
web开发移动开发移动端开发移动互联程序员
移动互联网时代来了! App市场爆发式增长为Web开发程序员带来新一轮机遇,近两年新增创业者,几乎全部选择了移动互联网项目!传统互联网企业中超过98%的门户网站已经或者正在从单一的网站入口转向PC、手机、Pad、智能电视等多端全平台兼容体系。据统计,AppStore中超过85%的App项目都选择了PHP作为后端程
- Log4J通用配置|注意问题 笔记
7454103
DAOapachetomcatlog4jWeb
关于日志的等级 那些去 百度就知道了!
这几天 要搭个新框架 配置了 日志 记下来 !做个备忘!
#这里定义能显示到的最低级别,若定义到INFO级别,则看不到DEBUG级别的信息了~!
log4j.rootLogger=INFO,allLog
# DAO层 log记录到dao.log 控制台 和 总日志文件
log4j.logger.DAO=INFO,dao,C
- SQLServer TCP/IP 连接失败问题 ---SQL Server Configuration Manager
darkranger
sqlcwindowsSQL ServerXP
当你安装完之后,连接数据库的时候可能会发现你的TCP/IP 没有启动..
发现需要启动客户端协议 : TCP/IP
需要打开 SQL Server Configuration Manager...
却发现无法打开 SQL Server Configuration Manager..??
解决方法: C:\WINDOWS\system32目录搜索framedyn.
- [置顶] 做有中国特色的程序员
aijuans
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有些技术书读得可
- document.domain 跨域问题
avords
document
document.domain用来得到当前网页的域名。比如在地址栏里输入:javascript:alert(document.domain); //www.315ta.com我们也可以给document.domain属性赋值,不过是有限制的,你只能赋成当前的域名或者基础域名。比如:javascript:alert(document.domain = "315ta.com");
- 关于管理软件的一些思考
houxinyou
管理
工作好多看年了,一直在做管理软件,不知道是我最开始做的时候产生了一些惯性的思维,还是现在接触的管理软件水平有所下降.换过好多年公司,越来越感觉现在的管理软件做的越来越乱.
在我看来,管理软件不论是以前的结构化编程,还是现在的面向对象编程,不管是CS模式,还是BS模式.模块的划分是很重要的.当然,模块的划分有很多种方式.我只是以我自己的划分方式来说一下.
做为管理软件,就像现在讲究MVC这
- NoSQL数据库之Redis数据库管理(String类型和hash类型)
bijian1013
redis数据库NoSQL
一.Redis的数据类型
1.String类型及操作
String是最简单的类型,一个key对应一个value,string类型是二进制安全的。Redis的string可以包含任何数据,比如jpg图片或者序列化的对象。
Set方法:设置key对应的值为string类型的value
- Tomcat 一些技巧
征客丶
javatomcatdos
以下操作都是在windows 环境下
一、Tomcat 启动时配置 JAVA_HOME
在 tomcat 安装目录,bin 文件夹下的 catalina.bat 或 setclasspath.bat 中添加
set JAVA_HOME=JAVA 安装目录
set JRE_HOME=JAVA 安装目录/jre
即可;
二、查看Tomcat 版本
在 tomcat 安装目
- 【Spark七十二】Spark的日志配置
bit1129
spark
在测试Spark Streaming时,大量的日志显示到控制台,影响了Spark Streaming程序代码的输出结果的查看(代码中通过println将输出打印到控制台上),可以通过修改Spark的日志配置的方式,不让Spark Streaming把它的日志显示在console
在Spark的conf目录下,把log4j.properties.template修改为log4j.p
- Haskell版冒泡排序
bookjovi
冒泡排序haskell
面试的时候问的比较多的算法题要么是binary search,要么是冒泡排序,真的不想用写C写冒泡排序了,贴上个Haskell版的,思维简单,代码简单,下次谁要是再要我用C写冒泡排序,直接上个haskell版的,让他自己去理解吧。
sort [] = []
sort [x] = [x]
sort (x:x1:xs)
| x>x1 = x1:so
- java 路径 配置文件读取
bro_feng
java
这几天做一个项目,关于路径做如下笔记,有需要供参考。
取工程内的文件,一般都要用相对路径,这个自然不用多说。
在src统计目录建配置文件目录res,在res中放入配置文件。
读取文件使用方式:
1. MyTest.class.getResourceAsStream("/res/xx.properties")
2. properties.load(MyTest.
- 读《研磨设计模式》-代码笔记-简单工厂模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 个人理解:简单工厂模式就是IOC;
* 客户端要用到某一对象,本来是由客户创建的,现在改成由工厂创建,客户直接取就好了
*/
interface IProduct {
- SVN与JIRA的关联
chenyu19891124
SVN
SVN与JIRA的关联一直都没能装成功,今天凝聚心思花了一天时间整合好了。下面是自己整理的步骤:
一、搭建好SVN环境,尤其是要把SVN的服务注册成系统服务
二、装好JIRA,自己用是jira-4.3.4破解版
三、下载SVN与JIRA的插件并解压,然后拷贝插件包下lib包里的三个jar,放到Atlassian\JIRA 4.3.4\atlassian-jira\WEB-INF\lib下,再
- JWFDv0.96 最新设计思路
comsci
数据结构算法工作企业应用公告
随着工作流技术的发展,工作流产品的应用范围也不断的在扩展,开始进入了像金融行业(我已经看到国有四大商业银行的工作流产品招标公告了),实时生产控制和其它比较重要的工程领域,而
- vi 保存复制内容格式粘贴
daizj
vi粘贴复制保存原格式不变形
vi是linux中非常好用的文本编辑工具,功能强大无比,但对于复制带有缩进格式的内容时,粘贴的时候内容错位很严重,不会按照复制时的格式排版,vi能不能在粘贴时,按复制进的格式进行粘贴呢? 答案是肯定的,vi有一个很强大的命令可以实现此功能 。
在命令模式输入:set paste,则进入paste模式,这样再进行粘贴时
- shell脚本运行时报错误:/bin/bash^M: bad interpreter 的解决办法
dongwei_6688
shell脚本
出现原因:windows上写的脚本,直接拷贝到linux系统上运行由于格式不兼容导致
解决办法:
1. 比如文件名为myshell.sh,vim myshell.sh
2. 执行vim中的命令 : set ff?查看文件格式,如果显示fileformat=dos,证明文件格式有问题
3. 执行vim中的命令 :set fileformat=unix 将文件格式改过来就可以了,然后:w
- 高一上学期难记忆单词
dcj3sjt126com
wordenglish
honest 诚实的;正直的
argue 争论
classical 古典的
hammer 锤子
share 分享;共有
sorrow 悲哀;悲痛
adventure 冒险
error 错误;差错
closet 壁橱;储藏室
pronounce 发音;宣告
repeat 重做;重复
majority 大多数;大半
native 本国的,本地的,本国
- hibernate查询返回DTO对象,DTO封装了多个pojo对象的属性
frankco
POJOhibernate查询DTO
DTO-数据传输对象;pojo-最纯粹的java对象与数据库中的表一一对应。
简单讲:DTO起到业务数据的传递作用,pojo则与持久层数据库打交道。
有时候我们需要查询返回DTO对象,因为DTO
- Partition List
hcx2013
partition
Given a linked list and a value x, partition it such that all nodes less than x come before nodes greater than or equal to x.
You should preserve the original relative order of th
- Spring MVC测试框架详解——客户端测试
jinnianshilongnian
上一篇《Spring MVC测试框架详解——服务端测试》已经介绍了服务端测试,接下来再看看如果测试Rest客户端,对于客户端测试以前经常使用的方法是启动一个内嵌的jetty/tomcat容器,然后发送真实的请求到相应的控制器;这种方式的缺点就是速度慢;自Spring 3.2开始提供了对RestTemplate的模拟服务器测试方式,也就是说使用RestTemplate测试时无须启动服务器,而是模拟一
- 关于推荐个人观点
liyonghui160com
推荐系统关于推荐个人观点
回想起来,我也做推荐了3年多了,最近公司做了调整招聘了很多算法工程师,以为需要多么高大上的算法才能搭建起来的,从实践中走过来,我只想说【不是这样的】
第一次接触推荐系统是在四年前入职的时候,那时候,机器学习和大数据都是没有的概念,什么大数据处理开源软件根本不存在,我们用多台计算机web程序记录用户行为,用.net的w
- 不间断旋转的动画
pangyulei
动画
CABasicAnimation* rotationAnimation;
rotationAnimation = [CABasicAnimation animationWithKeyPath:@"transform.rotation.z"];
rotationAnimation.toValue = [NSNumber numberWithFloat: M
- 自定义annotation
sha1064616837
javaenumannotationreflect
对象有的属性在页面上可编辑,有的属性在页面只可读,以前都是我们在页面上写死的,时间一久有时候会混乱,此处通过自定义annotation在类属性中定义。越来越发现Java的Annotation真心很强大,可以帮我们省去很多代码,让代码看上去简洁。
下面这个例子 主要用到了
1.自定义annotation:@interface,以及几个配合着自定义注解使用的几个注解
2.简单的反射
3.枚举
- Spring 源码
up2pu
spring
1.Spring源代码
https://github.com/SpringSource/spring-framework/branches/3.2.x
注:兼容svn检出
2.运行脚本
import-into-eclipse.bat
注:需要设置JAVA_HOME为jdk 1.7
build.gradle
compileJava {
sourceCompatibilit
- 利用word分词来计算文本相似度
yangshangchuan
wordword分词文本相似度余弦相似度简单共有词
word分词提供了多种文本相似度计算方式:
方式一:余弦相似度,通过计算两个向量的夹角余弦值来评估他们的相似度
实现类:org.apdplat.word.analysis.CosineTextSimilarity
用法如下:
String text1 = "我爱购物";
String text2 = "我爱读书";
String text3 =