类和对象(下)

一、构造函数(进阶)

1.1、构造函数数体的赋值

在创建对象时,比那一起通过调用构造函数,给对象中各个成员变量一个合适的初始值。

class Date
{
public:
    Date(int year, int month, int day)
    {
        _year = year;
        _month = month;
        _day = day;
    }
private:
    int _year;
    int _month;
    int _day;
};

虽然上述构造函数调用之后,对象已经有了一个初始值,单是不能将其称为对 对象中成员变量的初始化,构造函数中的语句只能将其称为赋初值,而不能称为初始化。因为初始化子还能初始化一次,而构造函数内可以多次赋值

1.2、初始化列表

初始化列表:一个以冒号开始,接着一个逗号分隔的数据成员列表,每个"成员变量"后面跟
一个放在括号中的初始值或表达式

class Date
{
public:
    Date(int year, int month, int day)
        : _year(year)
        , _month(month)
        , _day(day)
    {}
private:
    int _year;
    int _month;
    int _day;
};

注意:

1、每个成员变量在初始化列表中只能出现一次(初始化只能初始化一次)
2、类中包含以下成员,必须放在初始化列表位置进行初始化:

      引用成员变量   ,   const成员变量   ,   自定义类型成员(且没有默认构造函数时)

class A
{
public:
    A(int a)
        :_a(a)
    {}
private:
    int _a;
};


class B
{
public:
    B(int a, int ref)
        :_aobj(a)
        ,_ref(ref)
        ,_n(10)
    {}
private:
    A _aobj; // 没有默认构造函数
    int& _ref; // 引用
    const int _n; // const
};

3、尽量使用初始化列表初始化,因为不管你是否使用初始化列表,对于自定义类型成员变量,一定会先使用初始化列表初始化。

class Time
{
public:
    Time(int hour = 0)
        :_hour(hour)
    {
        cout << "Time()" << endl;
    }
    int _hour;
};

class Date
{
public:
    Date(int day)
    {}
private:
    int _day;
    Time _t;
};

int main()
{
    Date d(1);
}

4、成员变量在类中声明次序就是其在初始化列表中的初始化顺序,与其在初始化列表中的先后次序无关

class A
{
public:
    A(int a)
        :_a1(a)
        ,_a2(_a1)
    {}
    void Print() {
        cout<<_a1<<" "<<_a2<

上面的初始化列表会先执行第二个语句,因为_a2先定义

所以结果是  1   随机值
 

 1.3、explicit关键字

构造函数不仅可以构造与初始化对象,对于单个参数或者除第一个参数无默认值其余均有默认值
的构造函数,还具有类型转换的作用。

用explicit修饰构造函数,将会禁止构造函数的隐式转换。

class Date
{
public:
    explicit Date(int year)
        :_year(year)
    {}
/*
// 2. 虽然有多个参数,但是创建对象时后两个参数可以不传递,没有使用explicit修饰,具
有类型转换作用


// explicit修饰构造函数,禁止类型转换
explicit Date(int year, int month = 1, int day = 1)
        : _year(year)
        , _month(month)
        , _day(day)
    {}
*/


Date& operator=(const Date& d)
{
    if (this != &d)
    {
        _year = d._year;
        _month = d._month;
        _day = d._day;
    }
    return *this;
}
private:
    int _year;
    int _month;
    int _day;
};
void Test()
{
    Date d1(2022);
// 用一个整形变量给日期类型对象赋值
// 实际编译器背后会用2023构造一个无名对象,最后用无名对象给d1对象进行赋值
    d1 = 2023;
// 将1屏蔽掉,2放开时则编译失败,因为explicit修饰构造函数,禁止了单参构造函数类型转
换的作用
}

二、static成员

2.1、static概念

声明为static的类成员称为类的静态成员,用static修饰的成员变量,称之为静态成员变量;用
static修饰的成员函数,称之为静态成员函数。静态成员变量一定要在类外进行初始化

2.2、static特性

1. 静态成员为所有类对象所共享,不属于某个具体的对象,存放在静态区
2. 静态成员变量必须在类外定义,定义时不添加static关键字,类中只是声明
3. 类静态成员即可用 类名::静态成员 或者 对象.静态成员 来访问
4. 静态成员函数没有隐藏的this指针,不能访问任何非静态成员
5. 静态成员也是类的成员,受public、protected、private 访问限定符的限制

2.3、关于static的问题

实现一个类,计算程序中创建出了多少个类对象。

class A
{
public:
    A() { ++_scount; }
    A(const A& t) { ++_scount; }
    ~A() { --_scount; }
    static int GetACount() { return _scount; }
private:
    static int _scount;
};

int A::_scount = 0;
void TestA()
{
    cout << A::GetACount() << endl;
    A a1, a2;
    A a3(a1);
    cout << A::GetACount() << endl;
}

在这里很明显是先是两次构造函数,还有一次拷贝构造函数这里的_scount=3。当退出函数时,又需要调用两次析构函数,所以最终_scount=1。

3、友元

友元提供了一种突破封装的方式,有时提供了便利。但是友元会增加耦合度,破坏了封装,所以
友元不宜多用。

友元分为:友元函数 和 友元类

3.1、友元函数

class Date
{
public:
    Date(int year, int month, int day)
        : _year(year)
        , _month(month)
        , _day(day)
    {}
// d1 << cout; -> d1.operator<<(&d1, cout); 不符合常规调用
// 因为成员函数第一个参数一定是隐藏的this,所以d1必须放在<<的左侧
    ostream& operator<<(ostream& _cout)
    {
        _cout << _year << "-" << _month << "-" << _day << endl;
        return _cout;
    }
private:
    int _year;
    int _month;
    int _day;
};

友元函数可以直接访问类的私有成员,它是定义在类外部的普通函数,不属于任何类,但需要在
类的内部声明,声明时需要加friend关键字。

 

class Date
{
    friend ostream& operator<<(ostream& _cout, const Date& d);
    friend istream& operator>>(istream& _cin, Date& d);
public:
    Date(int year = 1900, int month = 1, int day = 1)
        : _year(year)
        , _month(month)
    , _day(day)
    {}
private:
    int _year;
    int _month;
    int _day;
};
ostream& operator<<(ostream& _cout, const Date& d)
{
    _cout << d._year << "-" << d._month << "-" << d._day;
    return _cout;
}
istream& operator>>(istream& _cin, Date& d)
{
    _cin >> d._year;
    _cin >> d._month;
    _cin >> d._day;
    return _cin;
}
int main()
{
    Date d;
    cin >> d;
    cout << d << endl;
    return 0;
}

注意:

1、友元函数可访问类的私有和保护成员,但不是类的成员函数
2、友元函数不能用const修饰
3、友元函数可以在类定义的任何地方声明,不受类访问限定符限制
4、一个函数可以是多个类的友元函数
5、友元函数的调用与普通函数的调用原理相同

3.2、友元类

友元类的所有成员函数都可以是另一个类的友元函数,都可以访问另一个类中的非公有成员。

注意:

1、友元关系是单向的,不具有交换性。
2、友元关系不能传递
3、友元关系不能继承

class Time
{
    friend class Date; // 声明日期类为时间类的友元类,则在日期类中就直接访问Time类中的私有成员变量
public:
    Time(int hour = 0, int minute = 0, int second = 0)
        : _hour(hour)
        , _minute(minute)
        , _second(second)
    {}
private:
    int _hour;
    int _minute;
    int _second;
};
class Date
{
public:
    Date(int year = 1900, int month = 1, int day = 1)
        : _year(year)
        , _month(month)
        , _day(day)
    {}
    void SetTimeOfDate(int hour, int minute, int second)
    {
// 直接访问时间类私有的成员变量
        _t._hour = hour;
        _t._minute = minute;
        _t._second = second;
    }
private:
    int _year;
    int _month;
    int _day;
    Time _t;
};

四、内部类

概念:如果一个类定义在另一个类的内部,这个内部类就叫做内部类。内部类是一个独立的类,
它不属于外部类,更不能通过外部类的对象去访问内部类的成员。外部类对内部类没有任何优越
的访问权限

内部类就是外部类的友元类,参见友元类的定义,内部类可以通过外部类的对象参数来访
问外部类中的所有成员。但是外部类不是内部类的友元。

特性:

1. 内部类可以定义在外部类的public、protected、private都是可以的。
2. 注意内部类可以直接访问外部类中的static成员,不需要外部类的对象/类名。
3. sizeof(外部类)=外部类,和内部类没有任何关系。

五、匿名对象

不能这么 A aa1(); 定义对象,因为编译器无法识别下面是一个函数声明,还是对象定义。

但是我们可以这么定义匿名对象,匿名对象的特点不用取名字,
但是他的生命周期只有这一行,当程序运行到下一行时匿名对象就会自动调用析构函数

class A
{
public:
    A(int a = 0)
        :_a(a)
    {
        cout << "A(int a)" << endl;
    }
    ~A()
    {
        cout << "~A()" << endl;
    }
private:
    int _a;
};
class Solution {
public:
    int Sum_Solution(int n) {
    //...
    return n;
    }
};
int main()
{
    A aa1;
    Solution().Sum_Solution(10);
    return 0;
}

六、编译器的优化

在传参和传返回值的过程中,一般编译器会做一些优化,减少对象的拷贝,这个在一些场景下还
是非常有用的。
 

class A
{
public:
    A(int a = 0)
        :_a(a)
    {
        cout << "A(int a)" << endl;
    }
    A(const A& aa)
        :_a(aa._a)
    {
        cout << "A(const A& aa)" << endl;
    }
    A& operator=(const A& aa)
    {
        cout << "A& operator=(const A& aa)" << endl;
        if (this != &aa)
        {
            _a = aa._a;
        }
        return *this;
    }
    ~A()
    {
        cout << "~A()" << endl;
    }
private:
    int _a;
};


void f1(A aa)
{}


A f2()
{
    A aa;
    return aa;
}


int main()
{
// 传值传参
    A aa1;
    f1(aa1);
    cout << endl;
// 传值返回
    f2();
    cout << endl;
// 隐式类型,连续构造+拷贝构造->优化为直接构造
    f1(1);
// 一个表达式中,连续构造+拷贝构造->优化为一个构造
    f1(A(2));
    cout << endl;
    // 一个表达式中,连续拷贝构造+拷贝构造->优化一个拷贝构造
    A aa2 = f2();
    cout << endl;
// 一个表达式中,连续拷贝构造+赋值重载->无法优化
    aa1 = f2();
    cout << endl;
    return 0;
}

 

你可能感兴趣的:(开发语言,c++)