- 16种重要编程语言概览
junecauzhang
软件开发语言原创开发语言c语言c++
1、LISP作者:麻省理工学院的人工智能研究先驱约翰·麦卡锡(JohnMcCarthy)发明年代:1958年应用领域:长期以来垄断人工智能领域的应用,。Lisp最初是作为展示程序的实用模型发布的。在20世纪70年代和80年代,Lisp家族成为人工智能领域非常受欢迎的语言。主要特点:LISP是一种通用高级计算机程序语言,LISP作为应用人工智能而设计的语言,是第一个声明式系内函数式程序设计语言,有别
- NVIDIA的算力支持
杭州大厂Java程序媛
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
NVIDIA的算力支持关键词:NVIDIA,GPU,Turing架构,RTX,AI,AIoT,云计算,大数据,深度学习1.背景介绍NVIDIA作为全球领先的图形处理芯片制造商,近年来在人工智能领域也取得了显著的进展。NVIDIA的GPU(图形处理器)因其强大的并行计算能力,成为了深度学习和人工智能(AI)领域的主流硬件。NVIDIA的Turing架构引入了更强的张量计算能力,使得深度学习任务能够更
- 基于深度学习的文本情感分析
杭州大厂Java程序媛
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
基于深度学习的文本情感分析关键词:深度学习、文本情感分析、自然语言处理、卷积神经网络、循环神经网络、BERT、情感分类、情绪识别1.背景介绍文本情感分析(TextSentimentAnalysis),又称情感计算(SentimentComputing),是自然语言处理(NLP)领域的重要研究方向之一。它旨在从文本数据中识别和理解作者表达的情感倾向,例如正面、负面或中立。随着互联网和社交媒体的蓬勃发
- 一切皆是映射:神经网络在图像识别中的应用案例
AI大模型应用之禅
AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
一切皆是映射:神经网络在图像识别中的应用案例关键词:神经网络、图像识别、深度学习、卷积神经网络、映射、模式识别1.背景介绍1.1问题的由来图像识别问题的研究源于人类对于智能机器的渴望。早在20世纪50年代,人工智能的先驱们就开始探索如何让计算机具备类似人类的视觉感知能力。从最初的简单模式匹配,到后来的统计学习方法,再到如今的深度学习,图像识别技术经历了几代演变。这一演变过程反映了人工智能技术的快速
- 人工智能基础知识速成 - 机器学习、深度学习算法原理及其实际应用案例
苹果酱0567
面试题汇总与解析课程设计springbootvue.jsjavamysql
一、机器学习概念与原理什么是机器学习?机器学习是人工智能的一个分支,通过从数据中学习和改进算法,使计算机系统在没有明确编程的情况下也能够自动地学习和改进。机器学习是一种实现人工智能的技术手段,能够让计算机“自我学习”,从而实现更准确的预测和决策。机器学习的基本原理机器学习的基本原理是通过构建数学模型,使用大量的数据进行训练,使得模型能够智能地预测和决策。在机器学习中,常用的模型包括线性回归、逻辑回
- 一切皆是映射:元学习中的神经架构搜索(NAS)
杭州大厂Java程序媛
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
元学习神经架构搜索NAS遗传算法强化学习演化算法一切皆是映射:元学习中的神经架构搜索(NAS)在人工智能的广阔领域中,神经架构搜索(NeuralArchitectureSearch,简称NAS)是一颗璀璨的明星,它代表着一种全新的方法,即通过算法自动寻找最优的神经网络架构。这种思想源于元学习(Meta-Learning),它关注的是如何使学习过程本身变得更加高效。本文将深入探讨NAS的原理、方法、
- Java垃圾分类回收系统web社区垃圾运输回收springboot/ssm代码编写
kirito学长-Java
java开发语言
Java垃圾分类回收系统web校园社区垃圾运输回收管理springboot/ssm代码编写基于springboot(可改ssm)+html+vue项目开发语言:Java框架:springboot/可改ssm+vueJDK版本:JDK1.8(或11)服务器:tomcat数据库:mysql5.7(或8.0)数据库工具:Navicat/sqlyog开发软件:eclipse/idea依赖管理包:Maven
- Meta要用AI替代中级工程师?科技变革下的职场风云!
盼达思文体科创
经验分享
引言在当今科技飞速发展的时代,人工智能(AI)已经成为了各个领域的热门话题。从智能家居到自动驾驶,从医疗诊断到金融分析,AI的应用范围越来越广泛,影响力也越来越大。Meta,作为全球科技巨头之一,一直处于技术创新的前沿。最近有消息传出,Meta计划用AI替代中级工程师,这一消息犹如一颗重磅炸弹,在科技圈和职场中引起了轩然大波。这一选题之所以值得我们重视,是因为它不仅关乎着Meta公司内部的人员结构
- AI助力编程,还是让程序员沦为“编程文盲”?
盼达思文体科创
经验分享
引言在当今这个科技飞速发展的时代,人工智能(AI)已经渗透到了我们生活的方方面面,而在编程领域,AI的影响力更是与日俱增。从早期简单的代码补全工具,到如今强大的代码生成模型,AI正在逐渐改变程序员的工作方式。据相关数据显示,超过70%的程序员在日常工作中使用过某种形式的AI编程辅助工具。那么,这种改变究竟是好是坏呢?这就是我们今天要探讨的重要话题。有人认为AI极大地提高了编程效率,让程序员能够专注
- Meta疯了?竟想用AI让中级工程师集体下岗!|AI头条
盼达思文体科创
经验分享
引言在当今科技飞速发展的时代,人工智能(AI)技术宛如一颗璀璨的新星,照亮了各个领域前行的道路。从智能语音助手到自动驾驶汽车,AI的身影无处不在,深刻地改变着我们的生活和工作方式。随着AI技术的不断突破,其在企业中的应用也日益广泛,各大科技巨头纷纷布局,希望借助AI的力量提升自身的竞争力。Meta,作为全球知名的科技公司,一直处于技术创新的前沿。此次传出将用AI替代中级工程师的消息,无疑在科技圈和
- 彻底颠覆!DeepSeek-R1横空出世,直接碾压OpenAI!
盼达思文体科创
经验分享
引言家人们,最近科技圈可太炸了!在人工智能领域,一直以来OpenAI就像一个超级霸主,凭借着强大的技术和广泛的应用,占据着全球人工智能市场的重要地位。它的GPT系列产品,从GPT-3到GPT-4Turbo,每一次更新都能引起全球的关注,无论是内容创作、智能客服还是科学研究,OpenAI的技术都发挥着重要作用。然而,就在大家都以为OpenAI会一直“独孤求败”的时候,中国的DeepSeek-R1突然
- 数据管理效率革命:非结构化数据管理平台引领变革
够快云库
非结构化数据管理非结构化数据管理
数字化时代,数据量呈指数级增长,其中非结构化数据占比超过80%,成为企业最庞大的“沉默资产”。传统以结构化数据为核心的管理体系,在应对文档、图像、音视频等复杂形态数据时,效率瓶颈日益凸显:存储成本高、检索速度慢、分析能力弱,导致数据价值长期被低估。如何通过技术革新实现数据管理效率的跃升?非结构化数据管理平台正成为破局的关键。传统管理之困:低效与高成本的恶性循环过去的数据管理工具依赖人工分类、目录式
- 自定义数据集 使用scikit-learn中svm的包实现svm分类
灵封~
机器学习人工智能
引入必要的库importnumpyasnpfromsklearn.datasetsimportmake_classificationfromsklearn.model_selectionimporttrain_test_splitfromsklearn.svmimportSVCfromsklearn.metricsimportaccuracy_score,classification_report
- 【LangChain编程:从入门到实践】代码实践
AI天才研究院
计算大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
【LangChain编程:从入门到实践】代码实践1.背景介绍1.1人工智能的发展历程人工智能(ArtificialIntelligence,AI)是当代科技领域最具革命性和颠覆性的技术之一。自20世纪50年代诞生以来,AI经历了起伏跌宕的发展历程。在早期,AI主要集中于基于规则的系统和专家系统,试图模拟人类的推理过程。然而,随着大数据时代的到来和计算能力的飞速提升,机器学习和深度学习技术开始占据主
- 因果推断与机器学习—因果表征学习与泛化能力
樱花的浪漫
因果推断机器学习学习人工智能深度学习自然语言处理计算机视觉
近十年来,深度学习在多个领域取得了巨大成功,包括机器视觉、自然语言处理、语音识别和生物信息等。这些成功为机器学习技术的进一步发展和应用奠定了基础。表征学习是深度学习的核心技术之一。在机器学习问题中,其主要目的是从观测到的低级变量中提取信息,进而学习到能够准确预测目标变量的高级变量。这种从低层次到高层次变量的学习过程,有助于模型更好地理解数据和进行预测。以德国马克斯-普朗克研究所的BernhardS
- 【专栏必读】考研湖科大教书匠计算机网络笔记导航
快乐江湖
考研网络计算机网络
文章目录第一章:概述第一节:因特网概述第二节:三种交换方式第三节:计算机网络定义和分类第四节:计算机网络性能指标第五节:计算机网络体系结构第二章:物理层第一节:物理层基本概念第二节:传输媒体第三节:传输方式第四节:编码与调制第五节:信道的极限容量第三章:数据链路层第一节:数据链路层概述第二节:封装成帧第三节:差错控制第四节:可靠传输第五节:点对点协议PPP第六节:媒体接入控制第七节:MAC地址、I
- 数据安全中心:守护云上数据安全的利器
九河云
阿里云云计算安全
在数字化时代,数据已成为企业最宝贵的资产之一,但数据安全问题也日益严峻。为了帮助企业应对数据泄露、合规风险等挑战,阿里云推出了数据安全中心(DataSecurityCenter,简称DSC),这是一款提供全面数据安全保护的云服务。下面就让九河云来给大家介绍一下吧。阿里云数据安全中心的核心功能包括敏感数据识别、数据分类分级、数据审计、数据脱敏和列加密等。它能够自动扫描云上各类数据源,如MaxComp
- 办公软件助力:研发过程中的产品质量保障
团队协作
在研发过程中,保证产品质量是至关重要的。以下是一些关键的措施和方法,用于确保研发过程中的产品质量:一、需求管理●准确捕获需求:与用户进行深入交流,进行市场调研,并参考竞争者的产品,以准确捕获用户需求和业务目标。●细化、分类并优先排序需求:将需求细化、分类,并根据重要性和紧急性进行优先排序,以便团队明确开发方向和重点。●持续跟踪、验证和更新需求:随着项目的进展、市场的变化和用户反馈的收集,需求也应相
- JVM-三大垃圾回收算法
可乐味的小白
javajavajvm
垃圾回收分类:MinorGC:新生代--------------------------->指Young区的垃圾回收过程MajorGC:老年代--------------------------->指OId区的垃圾回收过程FuIIGC:新生代+老年代---------------->Yound区和OId区一起执行的垃圾回收过程MajorGC不能单独存在。MajorGC都会伴随着MinorGC触发垃
- 大模型应用开发课程上新!
人工智能
在人工智能快速发展的今天,大模型应用已逐渐渗透到各个行业,对我们的工作和生活产生了深远的影响。越来越多的企业和开发者渴望深入探索大模型落地应用,然而却缺少高质量且专业的培训课程及学习途径。为满足企业和开发者在实际场景中使用大模型、创建大模型应用的需求,百度智能云千帆AI加速器近日推出线上加速营。针对各行业普遍适用的大模型功能场景,如逻辑编排、文件撰写等,采用案例实操讲解的方式授课。企业和开发者可以
- NeuralCF 模型:神经网络协同过滤模型
Lewis@
神经网络人工智能深度学习
实验和完整代码完整代码实现和jupyter运行:https://github.com/Myolive-Lin/RecSys--deep-learning-recommendation-system/tree/main引言NeuralCF模型由新加坡国立大学研究人员于2017年提出,其核心思想在于将传统协同过滤方法与深度学习技术相结合,从而更为有效地捕捉用户与物品之间的复杂交互关系。该模型利用神经网
- AI 图像生成器,如何使用 Janus-Pro 和 Janus, Deepseek 的 Janus-Pro、Janus 和其他领先工具的比较
知识大胖
NVIDIAGPU和大语言模型开发教程人工智能deepseekjanuspro
介绍人工智能(AI)彻底改变了数字艺术和设计领域,使创建高质量图像变得前所未有的简单,而且只需付出最少的努力。人工智能驱动的图像生成器使用深度学习算法将文本描述转换为逼真或艺术化的视觉效果,可满足营销、广告、游戏和内容创作等各种行业的需求。在本综合指南中,我们将探索一些最流行的AI图像生成器,包括DeepSeek的Janus-Pro和Janus,以及DALL·E3、Midjourney、Stabl
- 用 Python 微调 DeepSeek R1
程序员
用Python微调DeepSeekR1阅读时长:15分钟发布时间:2025-02-05近日热文:全网最全的神经网络数学原理(代码和公式)直观解释欢迎关注知乎和公众号的专栏内容LLM架构专栏知乎LLM专栏知乎【柏企】公众号【柏企科技说】【柏企阅文】微调前的准备工作在正式开始微调大语言模型之前,我们先来了解一下技术前提条件和设置要求。Python库和框架微调大语言模型需要用到以下Python库和框架:
- AI基础数学之——掌握中学基础数学——学习脑图说明
Math_teacher_fan
AI-中学数学学习算法机器学习人工智能c++python
目录代数部分几何部分统计与概率部分难易度说明一、代数二、几何三、统计与概率AI有关的基础数学部分指明代数部分几何部分统计与概率基础数学——PC学习方式总结代数部分数与式基础:从实数开始学习,了解实数的分类、性质等。接着是二次根式,掌握其化简、运算规则。整式与因式分解中,学习整式的运算、因式分解的方法。分式则要理解分式的概念、基本性质及运算。方程(组)与不等式(组):先学习一次方程(组)及其应用,掌
- OpenAI新商标申请曝光:AI硬件、机器人、量子计算全线布局?
新加坡内哥谈技术
人工智能深度学习语言模型学习科技
每周跟踪AI热点新闻动向和震撼发展想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行!订阅:https://rengongzhineng.io/上周五,AI初创公司OpenAI向美国专利商标局(USPTO)提交了一项新的商标申请,涵
- PyTorch中的 torch.nn.GRU
彬彬侠
自然语言处理GRUPyTorchPythonNLP自然语言处理
PyTorch中的torch.nn.GRUGRU(GatedRecurrentUnit)是循环神经网络(RNN)的一种变种,常用于处理序列数据。与传统的RNN相比,GRU引入了门控机制,旨在解决长序列训练中的梯度消失问题,并提高了训练效率和性能。在PyTorch中,torch.nn.GRU是一个非常方便的模块,用于构建和训练GRU网络。1.torch.nn.GRU的定义GRU是torch.nn中的
- 深度探索:机器学习中的粒子群优化算法(PBMT)原理及应用
生瓜蛋子
机器学习机器学习算法人工智能
目录一、引言与背景二、定理三、算法原理四、算法实现五、优缺点分析优点:缺点:六、案例应用七、对比与其他算法八、结论与展望一、引言与背景随着机器学习技术的迅速发展,优化算法在模型训练、特征选择、参数调优等多个环节扮演着至关重要的角色。粒子群优化(ParticleSwarmOptimization,PBMT)作为一类灵感源自鸟群觅食行为的群体智能优化算法,自1995年提出以来,因其简单、高效的特点,在
- 机器学习,深度学习,神经网络,深度神经网络
武昌库里写JAVA
面试题汇总与解析java学习开发语言课程设计springboot
人工智能包含机器学习,机器学习包含深度学习(是其中比较重要的分支)。深度学习源自于人工神经网络的研究,但是并不完全等于传统神经网络。神经网络与深度神经网络的区别在于隐藏层级,通常两层或两层以上隐藏层的网络叫做深度神经网络。一般隐藏层越多,精确度越高。深度学习的算法又分很多种,比较典型的四种:卷积神经网络—CNN,循环神经网络—RNN,生成对抗网络—GANs,深度强化学习—RL。机器学习和深度学习的
- Python中的决策树算法探索基本原理
myCOTB
Python算法python决策树
Python中的决策树算法探索决策树是一种简单而直观的机器学习算法,广泛应用于分类和回归任务中。它通过对数据进行分割,构建一个树形结构,从而做出决策。本文将探讨决策树的基本原理,并演示如何使用Python中的scikit-learn库实现决策树算法。决策树的基本原理决策树的基本思想是通过对数据进行分割,逐步缩小数据的范围,从而使得每个叶节点(终节点)中的样本属于同一类别或具有相似的特征。决策树的构
- 机器学习之决策树!决策树算法实战:葡萄酒品质预测
风清扬雨
人工智能机器学习算法决策树python
决策树算法实战:葡萄酒品质预测Hey小伙伴们,今天我们将通过一个有趣的案例来探索决策树算法在葡萄酒品质预测中的应用。想象一下,只需几个关键指标,就能预测一瓶葡萄酒的品质,是不是很神奇呢?让我们一起用Python和决策树算法,揭开葡萄酒的秘密吧!数据集介绍我们将使用著名的UCIMachineLearningRepository中的“葡萄酒品质”数据集。这个数据集包含了葡萄酒的各种化学成分和物理特性,
- jsonp 常用util方法
hw1287789687
jsonpjsonp常用方法jsonp callback
jsonp 常用java方法
(1)以jsonp的形式返回:函数名(json字符串)
/***
* 用于jsonp调用
* @param map : 用于构造json数据
* @param callback : 回调的javascript方法名
* @param filters : <code>SimpleBeanPropertyFilter theFilt
- 多线程场景
alafqq
多线程
0
能不能简单描述一下你在java web开发中需要用到多线程编程的场景?0
对多线程有些了解,但是不太清楚具体的应用场景,能简单说一下你遇到的多线程编程的场景吗?
Java多线程
2012年11月23日 15:41 Young9007 Young9007
4
0 0 4
Comment添加评论关注(2)
3个答案 按时间排序 按投票排序
0
0
最典型的如:
1、
- Maven学习——修改Maven的本地仓库路径
Kai_Ge
maven
安装Maven后我们会在用户目录下发现.m2 文件夹。默认情况下,该文件夹下放置了Maven本地仓库.m2/repository。所有的Maven构件(artifact)都被存储到该仓库中,以方便重用。但是windows用户的操作系统都安装在C盘,把Maven仓库放到C盘是很危险的,为此我们需要修改Maven的本地仓库路径。
- placeholder的浏览器兼容
120153216
placeholder
【前言】
自从html5引入placeholder后,问题就来了,
不支持html5的浏览器也先有这样的效果,
各种兼容,之前考虑,今天测试人员逮住不放,
想了个解决办法,看样子还行,记录一下。
【原理】
不使用placeholder,而是模拟placeholder的效果,
大概就是用focus和focusout效果。
【代码】
<scrip
- debian_用iso文件创建本地apt源
2002wmj
Debian
1.将N个debian-506-amd64-DVD-N.iso存放于本地或其他媒介内,本例是放在本机/iso/目录下
2.创建N个挂载点目录
如下:
debian:~#mkdir –r /media/dvd1
debian:~#mkdir –r /media/dvd2
debian:~#mkdir –r /media/dvd3
….
debian:~#mkdir –r /media
- SQLSERVER耗时最长的SQL
357029540
SQL Server
对于DBA来说,经常要知道存储过程的某些信息:
1. 执行了多少次
2. 执行的执行计划如何
3. 执行的平均读写如何
4. 执行平均需要多少时间
列名 &
- com/genuitec/eclipse/j2eedt/core/J2EEProjectUtil
7454103
eclipse
今天eclipse突然报了com/genuitec/eclipse/j2eedt/core/J2EEProjectUtil 错误,并且工程文件打不开了,在网上找了一下资料,然后按照方法操作了一遍,好了,解决方法如下:
错误提示信息:
An error has occurred.See error log for more details.
Reason:
com/genuitec/
- 用正则删除文本中的html标签
adminjun
javahtml正则表达式去掉html标签
使用文本编辑器录入文章存入数据中的文本是HTML标签格式,由于业务需要对HTML标签进行去除只保留纯净的文本内容,于是乎Java实现自动过滤。
如下:
public static String Html2Text(String inputString) {
String htmlStr = inputString; // 含html标签的字符串
String textSt
- 嵌入式系统设计中常用总线和接口
aijuans
linux 基础
嵌入式系统设计中常用总线和接口
任何一个微处理器都要与一定数量的部件和外围设备连接,但如果将各部件和每一种外围设备都分别用一组线路与CPU直接连接,那么连线
- Java函数调用方式——按值传递
ayaoxinchao
java按值传递对象基础数据类型
Java使用按值传递的函数调用方式,这往往使我感到迷惑。因为在基础数据类型和对象的传递上,我就会纠结于到底是按值传递,还是按引用传递。其实经过学习,Java在任何地方,都一直发挥着按值传递的本色。
首先,让我们看一看基础数据类型是如何按值传递的。
public static void main(String[] args) {
int a = 2;
- ios音量线性下降
bewithme
ios音量
直接上代码吧
//second 几秒内下降为0
- (void)reduceVolume:(int)second {
KGVoicePlayer *player = [KGVoicePlayer defaultPlayer];
if (!_flag) {
_tempVolume = player.volume;
- 与其怨它不如爱它
bijian1013
选择理想职业规划
抱怨工作是年轻人的常态,但爱工作才是积极的心态,与其怨它不如爱它。
一般来说,在公司干了一两年后,不少年轻人容易产生怨言,除了具体的埋怨公司“扭门”,埋怨上司无能以外,也有许多人是因为根本不爱自已的那份工作,工作完全成了谋生的手段,跟自已的性格、专业、爱好都相差甚远。
- 一边时间不够用一边浪费时间
bingyingao
工作时间浪费
一方面感觉时间严重不够用,另一方面又在不停的浪费时间。
每一个周末,晚上熬夜看电影到凌晨一点,早上起不来一直睡到10点钟,10点钟起床,吃饭后玩手机到下午一点。
精神还是很差,下午像一直野鬼在城市里晃荡。
为何不尝试晚上10点钟就睡,早上7点就起,时间完全是一样的,把看电影的时间换到早上,精神好,气色好,一天好状态。
控制让自己周末早睡早起,你就成功了一半。
有多少个工作
- 【Scala八】Scala核心二:隐式转换
bit1129
scala
Implicits work like this: if you call a method on a Scala object, and the Scala compiler does not see a definition for that method in the class definition for that object, the compiler will try to con
- sudoku slover in Haskell (2)
bookjovi
haskellsudoku
继续精简haskell版的sudoku程序,稍微改了一下,这次用了8行,同时性能也提高了很多,对每个空格的所有解不是通过尝试算出来的,而是直接得出。
board = [0,3,4,1,7,0,5,0,0,
0,6,0,0,0,8,3,0,1,
7,0,0,3,0,0,0,0,6,
5,0,0,6,4,0,8,0,7,
- Java-Collections Framework学习与总结-HashSet和LinkedHashSet
BrokenDreams
linkedhashset
本篇总结一下两个常用的集合类HashSet和LinkedHashSet。
它们都实现了相同接口java.util.Set。Set表示一种元素无序且不可重复的集合;之前总结过的java.util.List表示一种元素可重复且有序
- 读《研磨设计模式》-代码笔记-备忘录模式-Memento
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
/*
* 备忘录模式的功能是,在不破坏封装性的前提下,捕获一个对象的内部状态,并在对象之外保存这个状态,为以后的状态恢复作“备忘”
- 《RAW格式照片处理专业技法》笔记
cherishLC
PS
注意,这不是教程!仅记录楼主之前不太了解的
一、色彩(空间)管理
作者建议采用ProRGB(色域最广),但camera raw中设为ProRGB,而PS中则在ProRGB的基础上,将gamma值设为了1.8(更符合人眼)
注意:bridge、camera raw怎么设置显示、输出的颜色都是正确的(会读取文件内的颜色配置文件),但用PS输出jpg文件时,必须先用Edit->conv
- 使用 Git 下载 Spring 源码 编译 for Eclipse
crabdave
eclipse
使用 Git 下载 Spring 源码 编译 for Eclipse
1、安装gradle,下载 http://www.gradle.org/downloads
配置环境变量GRADLE_HOME,配置PATH %GRADLE_HOME%/bin,cmd,gradle -v
2、spring4 用jdk8 下载 https://jdk8.java.
- mysql连接拒绝问题
daizj
mysql登录权限
mysql中在其它机器连接mysql服务器时报错问题汇总
一、[running]root@192.168.9.136:~$mysql -uroot -h 192.168.9.108 -p //带-p参数,在下一步进行密码输入
Enter password: //无字符串输入
ERROR 1045 (28000): Access
- Google Chrome 为何打压 H.264
dsjt
applehtml5chromeGoogle
Google 今天在 Chromium 官方博客宣布由于 H.264 编解码器并非开放标准,Chrome 将在几个月后正式停止对 H.264 视频解码的支持,全面采用开放的 WebM 和 Theora 格式。
Google 在博客上表示,自从 WebM 视频编解码器推出以后,在性能、厂商支持以及独立性方面已经取得了很大的进步,为了与 Chromium 现有支持的編解码器保持一致,Chrome
- yii 获取控制器名 和方法名
dcj3sjt126com
yiiframework
1. 获取控制器名
在控制器中获取控制器名: $name = $this->getId();
在视图中获取控制器名: $name = Yii::app()->controller->id;
2. 获取动作名
在控制器beforeAction()回调函数中获取动作名: $name =
- Android知识总结(二)
come_for_dream
android
明天要考试了,速速总结如下
1、Activity的启动模式
standard:每次调用Activity的时候都创建一个(可以有多个相同的实例,也允许多个相同Activity叠加。)
singleTop:可以有多个实例,但是不允许多个相同Activity叠加。即,如果Ac
- 高洛峰收徒第二期:寻找未来的“技术大牛” ——折腾一年,奖励20万元
gcq511120594
工作项目管理
高洛峰,兄弟连IT教育合伙人、猿代码创始人、PHP培训第一人、《细说PHP》作者、软件开发工程师、《IT峰播》主创人、PHP讲师的鼻祖!
首期现在的进程刚刚过半,徒弟们真的很棒,人品都没的说,团结互助,学习刻苦,工作认真积极,灵活上进。我几乎会把他们全部留下来,现在已有一多半安排了实际的工作,并取得了很好的成绩。等他们出徒之日,凭他们的能力一定能够拿到高薪,而且我还承诺过一个徒弟,当他拿到大学毕
- linux expect
heipark
expect
1. 创建、编辑文件go.sh
#!/usr/bin/expect
spawn sudo su admin
expect "*password*" { send "13456\r\n" }
interact
2. 设置权限
chmod u+x go.sh 3.
- Spring4.1新特性——静态资源处理增强
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- idea ubuntuxia 乱码
liyonghui160com
1.首先需要在windows字体目录下或者其它地方找到simsun.ttf 这个 字体文件。
2.在ubuntu 下可以执行下面操作安装该字体:
sudo mkdir /usr/share/fonts/truetype/simsun
sudo cp simsun.ttf /usr/share/fonts/truetype/simsun
fc-cache -f -v
- 改良程序的11技巧
pda158
技巧
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。
让我们看一些基本的编程技巧:
尽量保持方法简短
永远永远不要把同一个变量用于多个不同的
- 300个涵盖IT各方面的免费资源(下)——工作与学习篇
shoothao
创业免费资源学习课程远程工作
工作与生产效率:
A. 背景声音
Noisli:背景噪音与颜色生成器。
Noizio:环境声均衡器。
Defonic:世界上任何的声响都可混合成美丽的旋律。
Designers.mx:设计者为设计者所准备的播放列表。
Coffitivity:这里的声音就像咖啡馆里放的一样。
B. 避免注意力分散
Self Co
- 深入浅出RPC
uule
rpc
深入浅出RPC-浅出篇
深入浅出RPC-深入篇
RPC
Remote Procedure Call Protocol
远程过程调用协议
它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层网络技术的协议。RPC协议假定某些传输协议的存在,如TCP或UDP,为通信程序之间携带信息数据。在OSI网络通信模型中,RPC跨越了传输层和应用层。RPC使得开发