Diffusion扩散模型分为两个阶段:前向过程 + 反向过程
前向过程 ——>图片中添加噪声
反向过程——>去除图片中的噪声
在每一轮的训练过程中,包含以下内容:
噪声图Noisy image经过训练后的U-Net网络,会得到预测噪声Predicted Noisy,而:去噪图Denoised image = 噪声图Noisy image - 预测噪声图Predicted Noisy。(计算公式省略了具体的参数,只表述逻辑关系)
U-Net的模型结构就是一个编-解码的过程,下采样Downsample、中间块Middle block、上采样Upsample中都包含了ResNet残差网络
1、主干网络做特征提取;2、加强网络做特征组合;3、预测网络做预测输出;
为改善DM扩散模型的缺点,Stable Diffusion引入图像压缩技术,在低维空间完成扩散过程;并添加CLIP模型,使文本-图像产生关联。
1. 图像压缩:DM扩散模型是直接在原图上进行操作,而Stale Diffusion是在较低维度的潜在空间上应用扩散过程,而不是使用实际像素空间,这样可以大幅减少内存和计算成本;
2. 文本-图像关联:在反向扩散过程中对U-Net的结构做了修改,使其可以添加文本向量Text Embedding,使得在每一轮的去噪过程中,让输出的图像与输入的文字产生关联;
Stable Diffusion在实际应用中的过程:原图——经过编码器E变成低维编码图——DM的前向过程逐步添加噪声,变成噪声图——T轮U-Net网络完成DM的反向过程——经过解码器D变成新图。
CLIP(Contrastive Language-Image Pre-Training) 模型是 OpenAI 在 2021 年初发布的用于匹配图像和文本的预训练神经网络模型,是近年来在多模态研究领域的经典之作。OpenAI 收集了 4 亿对图像文本对(一张图像和它对应的文本描述),分别将文本和图像进行编码,使用 metric learning进行训练。希望通过对比学习,模型能够学习到文本-图像对的匹配关系。
CLIP的论文地址
CLIP模型共有3个阶段:1阶段用作训练,2、3阶段用作推理。
通过计算文本和目标图像的余弦相似度从而获取预测值。CLIP模型主要包含以下两个模型;
这里举例一个包含N个文本-图像对的训练batch,对提取的文本特征和图像特征进行训练的过程:
CLIP的预测推理过程主要有以下两步:
A photo of {object}.
,然后再送入Text Encoder得到对应的文本特征。如果预测类别的数目为N,那么将得到N个文本特征。zero-shot :零样本学习,域外泛化问题。利用训练集数据训练模型,使得模型能够对测试集的对象进行分类,但是训练集类别和测试集类别之间没有交集,期间需要借助类别的描述,来建立训练集和测试集之间的联系,从而使得模型有效。
可以发现CLIP其实就是两个模型:视觉模型 + 文本模型。
在计算机视觉中,即便想迁移VGG、MobileNet这种预训练模型,也需要经过预训练、微调等手段,才能学习数据集的数据特征,而CLIP可以直接实现zero-shot的图像分类,即不需要任何训练数据,就能在某个具体下游任务上实现分类,这也是CLIP亮点和强大之处。
我的猜测:CLIP的zero-shot能力是依赖于它预训练的4亿对图像-文本对,样本空间涵盖的太大,并不是真正的零样本学习,和解决域外泛化问题。和人脸比对的原理相似,依靠大量样本来学习分类对象的特征空间。人脸比对是image-to-image,CLIP是 image-to-text。
OpenAI有关CLIP的代码链接地址
向模型提供8个示例图像及其文本描述,并比较相应特征之间的相似性
# images in skimage to use and their textual descriptions
descriptions = {
"page": "a page of text about segmentation",
"chelsea": "a facial photo of a tabby cat",
"astronaut": "a portrait of an astronaut with the American flag",
"rocket": "a rocket standing on a launchpad",
"motorcycle_right": "a red motorcycle standing in a garage",
"camera": "a person looking at a camera on a tripod",
"horse": "a black-and-white silhouette of a horse",
"coffee": "a cup of coffee on a saucer"
}
from torchvision.datasets import CIFAR100
cifar100 = CIFAR100(os.path.expanduser("~/.cache"), transform=preprocess, download=True)
text_descriptions = [f"This is a photo of a {label}" for label in cifar100.classes]
text_tokens = clip.tokenize(text_descriptions).cuda()
with torch.no_grad():
text_features = model.encode_text(text_tokens).float()
text_features /= text_features.norm(dim=-1, keepdim=True)
text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)
top_probs, top_labels = text_probs.cpu().topk(5, dim=-1)
plt.figure(figsize=(16, 16))
for i, image in enumerate(original_images):
plt.subplot(4, 4, 2 * i + 1)
plt.imshow(image)
plt.axis("off")
plt.subplot(4, 4, 2 * i + 2)
y = np.arange(top_probs.shape[-1])
plt.grid()
plt.barh(y, top_probs[i])
plt.gca().invert_yaxis()
plt.gca().set_axisbelow(True)
plt.yticks(y, [cifar100.classes[index] for index in top_labels[i].numpy()])
plt.xlabel("probability")
plt.subplots_adjust(wspace=0.5)
plt.show()
四个主流模型的区别:
GAN生成对抗模型、VAE变微分自动编码器、流模型、DM扩散模型
Deepfaker、DeepFaceLab的处理方式,生成中间状态
待完善
xx
参考:
神器CLIP:连接文本和图像,打造可迁移的视觉模型