Leetcode: Permutation Sequence

The set [1,2,3,…,n] contains a total of n! unique permutations.



By listing and labeling all of the permutations in order,

We get the following sequence (ie, for n = 3):



"123"

"132"

"213"

"231"

"312"

"321"

Given n and k, return the kth permutation sequence.



Note: Given n will be between 1 and 9 inclusive.

看到这道题,第一时间就联系到了Next Permutation. 那道题是让找下一个稍大的Permutation, 而这里是找从小到大第K大的Permutation, 而最小的Permutation我们明显知道,那么用Next Permutation做Subroutine,做K次,不就找到了所需的Permutation了吗。Next Permutation时间复杂度为O(N), 这里就是O(N*k).

代码里面把Int数组拷贝成一个char数组,是为了方便转换成String。int[]数组是不能直接作为new String(array)的argument的。另一方面,这道题再次证实了数组是对象,而函数用对象做argument传的是对该对象的引用,在函数内改引用不会对原数组造成影响,但是在函数内改引用所指向的内容,就会有影响了。比如这里传数组num,而里面改num[i], 改的是内容,所以num改变了

 1 public class Solution {

 2     public String getPermutation(int n, int k) {

 3         char[] array = new char[n];

 4         for (int i=0; i<n; i++) {

 5             array[i] = (char)('0' + i + 1);

 6         }

 7         for (int i=1; i<k; i++) {

 8             helper(array);

 9         }

10         return new String(array);

11     }

12     

13     public void helper(char[] array) {

14         int i = 0;

15         int j = 0;

16         for (i=array.length-2; i>=0; i--) {

17             if (array[i] < array[i+1]) break;

18         }

19         if (i >= 0) {

20             for (j=i; j<array.length-1; j++) {

21                 if (array[j+1] <= array[i]) break;

22             }

23             char temp = array[i];

24             array[i] = array[j];

25             array[j] = temp;

26         }

27         reverse(array, i+1);

28     }

29     

30     public void reverse(char[] array, int index) {

31         int l = index;

32         int r = array.length - 1;

33         while (l < r) {

34             char temp = array[l];

35             array[l] = array[r];

36             array[r] = temp;

37             l++;

38             r--;

39         }

40     }

41 }

我这个方法很直接,但是时间复杂度O(N*k)应该比较大,因为k是可以取值到N!的,虽然通过了OJ,但是还是不太好。 网上看到一些做法,均是把它当做一道找规律的数学题目。我们知道,n个数的permutation总共有n阶乘个,基于这个性质我们可以得到某一位对应的数字是哪一个。思路是这样的,比如当前长度是n,我们知道每个相同的起始元素对应(n-1)!个permutation,也就是(n-1)!个permutation后会换一个起始元素。因此,只要当前的k除以(n-1)!,得到的数字就是当前的index,如此就可以得到对应的元素,而k % (n-1)! 得到的数字就是当前剩余数组的index,如此递推直到数组中没有元素结束。实现中我们要维护一个数组来记录当前的元素,每次得到一个元素加入结果数组,然后从剩余数组中移除,因此空间复杂度是O(n)。时间上总共需要n个回合,而每次删除元素如果是用数组需要O(n),所以总共是O(n^2)。这里如果不移除元素也需要对元素做标记,所以要判断第一个还是个线性的操作。

第二遍做法:

 1 public class Solution {

 2     public String getPermutation(int n, int k) {

 3         if (n<=0 || k<=0) return "";

 4         StringBuffer res = new StringBuffer();

 5         int factorial = 1;

 6         for (int i=2; i<n; i++) {

 7             factorial *= i;

 8         }

 9         ArrayList<Integer> num = new ArrayList<Integer>();

10         for (int i=1; i<=n; i++) {

11             num.add(i);

12         }

13         int round = n - 1;

14         k--;

15         while (round >= 0) {

16             int index = k / factorial;

17             k %= factorial;

18             res.append(num.get(index));

19             num.remove(index);

20             if (round > 0) {

21                 factorial /= round;

22             }

23             round--;

24         }

25         return res.toString();

26     }

27 }

说明:num数组中按顺序存着1-n这n个数;每找到一个index,把它加入res的同时,把该index元素从数组删除. 这样不会重复利用某个数组元素

k--目的是让下标从0开始,这样下标就是从0到n-1,更好地跟数组下标匹配(这样每(n-1)!个数它们的第一个元素都是一样的)。

factorial最开始是(n-1)!,然后(n-2)!。。。跟数组剩余元素个数有关(每次减一)

因为答案有n位,所以round有n轮,一轮确定一位数。这里因为正好factorial要依次除n-1, n-2, n-3...所以干脆就让round计数从n-1到0

 

你可能感兴趣的:(LeetCode)