Proof:数学归纳法:
~~~~~~~~ 令 P ( n ) P\left( n \right) P(n)为:
1 3 + 2 3 + ⋯ + n 3 = ( n ( n + 1 ) 2 ) 2 ( ∀ n ≥ 1 ) \begin{align*} 1^{3}+2^{3}+\cdots +n^{3}=\left ( \frac{n \left ( n+1 \right )}{2}\right )^{2} ~~~~ \left ( \forall n \ge 1 \right )\\ \end{align*} 13+23+⋯+n3=(2n(n+1))2 (∀n≥1)
归纳基础: ∵ \because ∵ 当 n = 1 n=1 n=1时,
1 3 = ( 1 ( 1 + 1 ) 2 ) 2 = 1 \begin{align*} 1^{3}=\left ( \frac{1 \left ( 1+1 \right )}{2}\right )^{2}=1\\ \end{align*} 13=(21(1+1))2=1
∴ P ( 1 ) ~~~~~~~~~~~~~~~~~~~~\therefore P\left( 1 \right) ∴P(1) 为真;
归纳假设:设 P ( k ) P\left( k \right) P(k)为真,即:
1 3 + 2 3 + ⋯ + k 3 = ( k ( k + 1 ) 2 ) 2 ( k ∈ n ) \begin{align*} 1^{3}+2^{3}+\cdots +k^{3}=\left ( \frac{k \left ( k+1 \right )}{2}\right )^{2} ~~~~ \left ( k \in n \right )\\ \end{align*} 13+23+⋯+k3=(2k(k+1))2 (k∈n)
归纳步骤:当 n = k + 1 n=k+1 n=k+1时,方程两边同时加上 ( k + 1 ) 3 \left(k+1\right)^{3} (k+1)3,
1 3 + 2 3 + ⋯ + k 3 + ( k + 1 ) 3 = ( k ( k + 1 ) 2 ) 2 + ( k + 1 ) 3 = k 2 ( k + 1 ) 2 4 + ( 4 k + 4 ) ( k + 1 ) 2 4 = ( ( k + 1 ) ( k + 2 ) 2 ) 2 \begin{align*} 1^{3}+2^{3}+\cdots +k^{3}+\left( k+1\right)^{3}&=\left ( \frac{k \left ( k+1 \right )}{2}\right )^{2} +\left( k+1\right)^{3}\\ &=\frac{k^{2} \left( k +1 \right)^{2}}{4}+ \frac{\left( 4 k + 4 \right) \left( k +1 \right)^{2}}{4}\\ &=\left( \frac{\left( k+1\right) \left( k+2\right)}{2}\right)^{2}\\ \end{align*} 13+23+⋯+k3+(k+1)3=(2k(k+1))2+(k+1)3=4k2(k+1)2+4(4k+4)(k+1)2=(2(k+1)(k+2))2
~~~~~~~~ 因此,可知 P ( n ) P\left( n \right) P(n)蕴涵 P ( n + 1 ) P\left( n+1 \right) P(n+1),
综上所述,对于任意 n ≥ 1 n \ge 1 n≥1, P ( n ) P\left( n \right) P(n)都为真。
Proof:数学归纳法:
~~~~~~~~ 令 P ( n ) P\left( n \right) P(n)为:
1 + r + r 2 + ⋯ + r n = r n + 1 − 1 r − 1 ( ∀ n ∈ N , r ≠ 1 ) \begin{align*} 1+r+r^{2}+\cdots +r^{n}=\frac{r^{n+1}-1 }{r-1} ~~~~ \left ( \forall n \in N, r\ne 1 \right )\\ \end{align*} 1+r+r2+⋯+rn=r−1rn+1−1 (∀n∈N,r=1)
归纳基础: ∵ \because ∵ 当 n = 1 n=1 n=1时,
1 + r 1 = r 2 − 1 r − 1 = r + 1 \begin{align*} 1+r^{1}=\frac{r^{2}-1 }{r-1}=r+1\\ \end{align*} 1+r1=r−1r2−1=r+1
∴ P ( 1 ) ~~~~~~~~~~~~~~~~~~~~\therefore P\left( 1 \right) ∴P(1) 为真;
归纳假设:设 P ( k ) P\left( k \right) P(k)为真,即:
1 + r + r 2 + ⋯ + r k = r k + 1 − 1 r − 1 ( k ∈ N , r ≠ 1 ) \begin{align*} 1+r+r^{2}+\cdots +r^{k}=\frac{r^{k+1}-1 }{r-1} ~~~~ \left (k \in N, r\ne 1 \right )\\ \end{align*} 1+r+r2+⋯+rk=r−1rk+1−1 (k∈N,r=1)
归纳步骤:当 n = k + 1 n=k+1 n=k+1时,方程两边同时加上 r k + 1 r^{k+1} rk+1,
1 + r + r 2 + ⋯ + r k + r k + 1 = r k + 1 − 1 r − 1 + r k + 1 = r k + 1 − 1 r − 1 + r k + 1 × r − r k + 1 r − 1 = r k + 2 − 1 r − 1 \begin{align*} 1+r+r^{2}+\cdots +r^{k}+r^{k+1}&=\frac{r^{k+1}-1 }{r-1}+r^{k+1}\\ &=\frac{r^{k+1}-1 }{r-1}+\frac{r^{k+1}\times r-r^{k+1} }{r-1}\\ &=\frac{r^{k+2}-1 }{r-1}\\ \end{align*} 1+r+r2+⋯+rk+rk+1=r−1rk+1−1+rk+1=r−1rk+1−1+r−1rk+1×r−rk+1=r−1rk+2−1
~~~~~~~~ 因此,可知 P ( n ) P\left( n \right) P(n)蕴涵 P ( n + 1 ) P\left(n+1\right) P(n+1),
综上所述,对于任意 n ∈ N n\in N n∈N, 且 r ≠ 1 r\ne 1 r=1, P ( n ) P\left(n\right) P(n)都为真。
Proof:数学归纳法:
~~~~~~~~ 令 P ( n ) P\left( n \right) P(n)为:
1 + 1 4 + 1 9 + ⋯ + 1 n 2 = 2 − 1 n ( ∀ n > 1 ) \begin{align*} 1+\frac{1}{4}+\frac{1}{9}+\cdots +\frac{1}{n^{2}}=2-\frac{1}{n} ~~~~ \left ( \forall n > 1\right )\\ \end{align*} 1+41+91+⋯+n21=2−n1 (∀n>1)
归纳基础: ∵ \because ∵ 当 n = 2 n=2 n=2时,
1 + 1 4 = 5 4 < 2 − 1 2 = 6 4 \begin{align*} 1+\frac{1}{4}=\frac{5}{4}<2-\frac{1}{2}=\frac{6}{4}\\ \end{align*} 1+41=45<2−21=46
∴ P ( 1 ) ~~~~~~~~~~~~~~~~~~~~\therefore P\left( 1 \right) ∴P(1) 为真;
归纳假设:设 P ( k ) P\left( k \right) P(k)为真,即:
1 + 1 4 + 1 9 + ⋯ + 1 k 2 = 2 − 1 k ( k ∈ n ) \begin{align*} 1+\frac{1}{4}+\frac{1}{9}+\cdots +\frac{1}{k^{2}}=2-\frac{1}{k} ~~~~ \left ( k \in n\right )\\ \end{align*} 1+41+91+⋯+k21=2−k1 (k∈n)
归纳步骤:当 n = k + 1 n=k+1 n=k+1时,方程两边同时加上 ( k + 1 ) 3 \left(k+1\right)^{3} (k+1)3,
1 + 1 4 + 1 9 + ⋯ + 1 k 2 + 1 ( k + 1 ) 2 < 2 − 1 k + 1 ( k + 1 ) 2 ( k ∈ n ) < 2 − ( k + 1 ) 2 − k k ( k + 1 ) 1 k + 1 < 2 − k 2 + k + 1 k 2 + k 1 k + 1 ( k 2 + k + 1 k 2 + k > 1 ) < 2 − 1 k + 1 \begin{align*} 1+\frac{1}{4}+\frac{1}{9}+\cdots +\frac{1}{k^{2}}+\frac{1}{\left(k+1\right)^{2}}&<2-\frac{1}{k}+\frac{1}{\left(k+1\right)^{2}} ~~~~ \left ( k \in n\right )\\ &<2-\frac{\left(k+1\right)^2-k}{k\left(k+1\right)}\frac{1}{k+1}\\ &<2-\frac{k^{2}+k+1}{k^{2}+k}\frac{1}{k+1}~~~~\left ( \frac{k^{2}+k+1}{k^{2}+k} > 1\right )\\ &<2-\frac{1}{k+1}\\ \end{align*} 1+41+91+⋯+k21+(k+1)21<2−k1+(k+1)21 (k∈n)<2−k(k+1)(k+1)2−kk+11<2−k2+kk2+k+1k+11 (k2+kk2+k+1>1)<2−k+11
~~~~~~~~ 因此,可知 P ( n ) P\left( n \right) P(n)蕴涵 P ( n + 1 ) P\left( n+1 \right) P(n+1),
综上所述,对于任意$ n>1$, P ( n ) P\left( n \right) P(n)都为真。
Proof:强数学归纳法:
~~~~~~~~ 令 P ( n ) P\left( n \right) P(n)为:
F ( n − 1 ) ⋅ F ( n + 1 ) − F ( n ) 2 = ( − 1 ) n ( ∀ n ≥ 1 ) \begin{align*} F\left( n-1 \right)\cdot F\left( n+1 \right)-F\left( n \right)^{2}=\left( -1 \right)^{n} ~~~~ \left ( \forall n \ge 1\right )\\ \end{align*} F(n−1)⋅F(n+1)−F(n)2=(−1)n (∀n≥1)
归纳基础: ∵ \because ∵ 由斐波那契数列可知: F ( 0 ) = 0 , F ( 1 ) = 1 F\left( 0 \right)=0,F\left( 1 \right)=1 F(0)=0,F(1)=1
~~~~~~~~~~~~~~~~~~~~ 当 n = 1 n=1 n=1时, F ( 2 ) = 1 F\left( 2 \right)=1 F(2)=1,
0 × 1 − 1 2 = ( − 1 ) 1 = − 1 \begin{align*} 0\times1-1^{2}=\left(-1\right)^{1}=-1\\ \end{align*} 0×1−12=(−1)1=−1
~~~~~~~~~~~~~~~~~~~~ 当 n = 2 n=2 n=2时, F ( 3 ) = 2 F\left( 3 \right)=2 F(3)=2,
1 × 2 − 1 2 = ( − 1 ) 2 = 1 \begin{align*} 1\times2-1^{2}=\left(-1\right)^{2}=1\\ \end{align*} 1×2−12=(−1)2=1
~~~~~~~~~~~~~~~~~~~~ 当 n = 3 n=3 n=3时, F ( 4 ) = 3 F\left( 4 \right)=3 F(4)=3,
1 × 3 − 2 2 = ( − 1 ) 3 = − 1 \begin{align*} 1\times3-2^{2}=\left(-1\right)^{3}=-1\\ \end{align*} 1×3−22=(−1)3=−1
∴ P ( 1 ) , P ( 2 ) , P ( 3 ) ~~~~~~~~~~~~~~~~~~~~\therefore P\left( 1 \right),P\left( 2 \right),P\left( 3 \right) ∴P(1),P(2),P(3) 为真,且 ( − 1 ) n = − ( − 1 ) n + 1 , ( − 1 ) n = ( − 1 ) n + 2 \left( -1 \right)^{n}=-\left( -1 \right)^{n+1},\left( -1 \right)^{n}=\left( -1 \right)^{n+2} (−1)n=−(−1)n+1,(−1)n=(−1)n+2;
归纳假设:设 P ( k ) P\left( k \right) P(k)为真,且在集合 C = { 1 , 2 , 3 , ⋯ , k } C=\left \{ 1,2,3,\cdots ,k \right \} C={1,2,3,⋯,k}中 ∀ m ∈ C \forall m\in C ∀m∈C,都有 P ( m ) P\left( m \right) P(m)为真,即:
F ( m − 1 ) ⋅ F ( m + 1 ) − F ( m ) 2 = ( − 1 ) m ( ∀ m ∈ C ) \begin{align*} F\left( m-1 \right)\cdot F\left( m+1 \right)-F\left( m \right)^{2}=\left( -1 \right)^{m} ~~~~ \left ( \forall m \in C\right )\\ \end{align*} F(m−1)⋅F(m+1)−F(m)2=(−1)m (∀m∈C)
归纳步骤:当 n = k + 1 n=k+1 n=k+1时,
F ( k ) ⋅ F ( k + 2 ) − F ( k + 1 ) 2 = [ F ( k − 2 ) + F ( k − 1 ) ] [ F ( k + 1 ) + F ( k ) ] − [ F ( k ) + F ( k − 1 ) ] 2 = F ( k − 2 ) ⋅ F ( k + 1 ) + F ( k − 2 ) ⋅ F ( k ) + F ( k − 1 ) ⋅ F ( k + 1 ) + F ( k − 1 ) ⋅ F ( k ) − F ( k ) 2 − 2 F ( k ) ⋅ F ( k − 1 ) − F ( k − 1 ) 2 = [ F ( k − 1 ) ⋅ F ( k + 1 ) − F ( k ) 2 ] + [ F ( k − 2 ) ⋅ F ( k ) − F ( k − 1 ) 2 ] + F ( k − 2 ) ⋅ F ( k + 1 ) − F ( k ) ⋅ F ( k − 1 ) = [ F ( k − 1 ) ⋅ F ( k + 1 ) − F ( k ) 2 ] + [ F ( k − 2 ) ⋅ F ( k ) − F ( k − 1 ) 2 ] + F ( k − 2 ) ⋅ [ F ( k ) + F ( k − 1 ) ] − F ( k − 1 ) ⋅ [ F ( k − 2 ) + F ( k − 1 ) ] = [ F ( k − 1 ) ⋅ F ( k + 1 ) − F ( k ) 2 ] + [ F ( k − 2 ) ⋅ F ( k ) − F ( k − 1 ) 2 ] + [ F ( k − 2 ) ⋅ F ( k ) − F ( k − 1 ) 2 ] = ( − 1 ) k + ( − 1 ) k − 1 + ( − 1 ) k − 1 = ( − 1 ) k − 1 = ( − 1 ) k + 1 \begin{align*} &F\left( k \right)\cdot F\left( k+2 \right)-F\left( k+1 \right)^{2}\\ =&\left [ F\left( k-2 \right) + F\left( k-1 \right) \right ]\left[ F\left( k+1 \right)+F\left( k \right) \right]-\left[ F\left( k \right)+F\left( k-1 \right) \right]^{2} \\ =&F\left( k-2 \right)\cdot F\left( k+1 \right)+F\left( k-2 \right)\cdot F\left( k \right)+F\left( k-1 \right)\cdot F\left( k+1 \right)+F\left( k-1 \right)\cdot F\left( k \right)\\ &-F\left( k \right)^{2}-2F\left( k \right)\cdot F\left( k-1 \right)-F\left( k-1 \right)^{2}\\ =&\left[ F\left( k-1 \right)\cdot F\left( k+1 \right)-F\left( k \right)^{2}\right] +\left[ F\left( k-2 \right)\cdot F\left( k \right)-F\left( k-1 \right)^{2}\right] \\ &+F\left( k-2 \right)\cdot F\left( k+1 \right)-F\left( k \right)\cdot F\left( k-1 \right)\\ =&\left[ F\left( k-1 \right)\cdot F\left( k+1 \right)-F\left( k \right)^{2}\right] +\left[ F\left( k-2 \right)\cdot F\left( k \right)-F\left( k-1 \right)^{2}\right] \\ &+ F\left( k-2 \right)\cdot \left[ F\left( k \right)+ F\left( k-1 \right) \right]-F\left( k-1 \right)\cdot \left[ F\left( k-2 \right)+ F\left( k-1 \right) \right]\\ =&\left[ F\left( k-1 \right)\cdot F\left( k+1 \right)-F\left( k \right)^{2}\right] +\left[ F\left( k-2 \right)\cdot F\left( k \right)-F\left( k-1 \right)^{2}\right]\\ &+\left[ F\left( k-2 \right)\cdot F\left( k \right)-F\left( k-1 \right)^{2}\right]\\ =&\left( -1 \right)^{k}+\left( -1 \right)^{k-1}+\left( -1 \right)^{k-1}\\ =&\left( -1 \right)^{k-1}\\ =&\left( -1 \right)^{k+1}\\ \end{align*} ========F(k)⋅F(k+2)−F(k+1)2[F(k−2)+F(k−1)][F(k+1)+F(k)]−[F(k)+F(k−1)]2F(k−2)⋅F(k+1)+F(k−2)⋅F(k)+F(k−1)⋅F(k+1)+F(k−1)⋅F(k)−F(k)2−2F(k)⋅F(k−1)−F(k−1)2[F(k−1)⋅F(k+1)−F(k)2]+[F(k−2)⋅F(k)−F(k−1)2]+F(k−2)⋅F(k+1)−F(k)⋅F(k−1)[F(k−1)⋅F(k+1)−F(k)2]+[F(k−2)⋅F(k)−F(k−1)2]+F(k−2)⋅[F(k)+F(k−1)]−F(k−1)⋅[F(k−2)+F(k−1)][F(k−1)⋅F(k+1)−F(k)2]+[F(k−2)⋅F(k)−F(k−1)2]+[F(k−2)⋅F(k)−F(k−1)2](−1)k+(−1)k−1+(−1)k−1(−1)k−1(−1)k+1
~~~~~~~~ 可见,可知 P ( 1 ) , ⋯ , P ( n ) P\left( 1 \right),\cdots ,P\left( n \right) P(1),⋯,P(n)蕴涵 P ( n + 1 ) P\left( n+1 \right) P(n+1),证毕。
综上所述,由强归纳法可知,原命题为真。
Proof:强数学归纳法:
~~~~~~~~ 令 P ( n ) P\left( n \right) P(n)为:不管有多少个小方格、不论怎么摆放,得到的周长一定是偶数。
~~~~~~~~ 其中 n n n为小方格数量,1个小方格周长 c 0 c_{0} c0为4。
归纳基础: ∵ \because ∵ 当 n = 1 n=1 n=1时,放入第 1 1 1个小方格没有重叠的边,
c 1 = c 0 = 4 \begin{align*} c_{1}=c_{0}=4\\ \end{align*} c1=c0=4
~~~~~~~~~~~~~~~~~~~~ 当 n = 2 n=2 n=2时,放入第 2 2 2个小方格有一条重叠的边,
c 2 = c 0 − 1 + 3 = 6 \begin{align*} c_{2}=c_{0}-1+3=6\\ \end{align*} c2=c0−1+3=6
~~~~~~~~~~~~~~~~~~~~ 当 n = 4 n=4 n=4时,放入第 4 4 4个小方格有两条重叠的边,
c 4 = c 0 + ( − 1 + 3 ) × 2 − 2 + 2 = 8 \begin{align*} c_{4}=c_{0}+\left(-1+3\right)\times 2-2+2=8\\ \end{align*} c4=c0+(−1+3)×2−2+2=8
~~~~~~~~~~~~~~~~~~~~ 当 n = 6 n=6 n=6时,放入第 6 6 6个小方格有三条重叠的边,
c 6 = c 0 + ( − 1 + 3 ) × 4 − 3 + 1 = 10 \begin{align*} c_{6}=c_{0}+\left(-1+3\right)\times 4-3+1=10\\ \end{align*} c6=c0+(−1+3)×4−3+1=10
~~~~~~~~~~~~~~~~~~~~ 当 n = 9 n=9 n=9时,放入第 9 9 9个小方格有四条重叠的边,
c 9 = c 0 + ( − 1 + 3 ) × 7 − 4 = 14 \begin{align*} c_{9}=c_{0}+\left(-1+3\right)\times 7-4=14\\ \end{align*} c9=c0+(−1+3)×7−4=14
∴ P ( 1 ) , P ( 2 ) , P ( 4 ) , P ( 6 ) , P ( 9 ) ~~~~~~~~~~~~~~~~~~~~\therefore P\left( 1 \right),P\left( 2 \right),P\left( 4 \right),P\left( 6 \right),P\left( 9 \right) ∴P(1),P(2),P(4),P(6),P(9) 为真;
归纳假设:设 P ( k ) P\left( k \right) P(k)为真,且在集合 T = { 1 , 2 , 3 , ⋯ , k } T=\left \{ 1,2,3,\cdots ,k \right \} T={1,2,3,⋯,k}中 ∀ m ∈ T \forall m\in T ∀m∈T,都有 P ( m ) P\left( m \right) P(m)为真,
~~~~~~~~~~~~~~~~~~~~ 即:加入第m个小方格后周长仍为偶数;
归纳步骤:当 n = k + 1 n=k+1 n=k+1时,加入第 k + 1 k+1 k+1个新小方格时周长为 c k + 1 c_{k+1} ck+1,
c k + 1 = c k − 1 + 3 = c k + 2 c k + 1 = c k − 2 + 2 = c k c k + 1 = c k − 3 + 1 = c k − 2 c k + 1 = c k − 4 \begin{align} c_{k+1}&=c_{k}-1+3=c_{k}+2\\ c_{k+1}&=c_{k}-2+2=c_{k}\\ c_{k+1}&=c_{k}-3+1=c_{k}-2\\ c_{k+1}&=c_{k}-4 \end{align} ck+1ck+1ck+1ck+1=ck−1+3=ck+2=ck−2+2=ck=ck−3+1=ck−2=ck−4
~~~~~~~~~~~~~~~~~~~~ 其中 ( 1 ) \left( 1\right) (1)为重叠一条边, ( 2 ) \left( 2\right) (2)为重叠两条边, ( 3 ) \left( 3\right) (3)为重叠三条边, ( 4 ) \left( 4\right) (4)为重叠四条边,
~~~~~~~~~~~~~~~~~~~~ 且均为偶数;
~~~~~~~~ 可见,可知 P ( 1 ) , ⋯ , P ( n ) P\left( 1 \right),\cdots ,P\left( n \right) P(1),⋯,P(n)蕴涵 P ( n + 1 ) P\left( n+1 \right) P(n+1),证毕。
综上所述,由强归纳法可知,原命题为真。
Proof:数学归纳法:
~~~~~~~~ 令 P ( n ) P\left( n \right) P(n)为:
A ∩ ⋃ i = 1 n B i = ⋃ i = 1 n ( A ∩ B i ) \begin{align*} A\cap \bigcup_{i=1}^{n}B_{i}= \bigcup_{i=1}^{n}\left( A \cap B_{i}\right) \\ \end{align*} A∩i=1⋃nBi=i=1⋃n(A∩Bi)
归纳基础: ∵ \because ∵ 当 n = 1 n=1 n=1时,
A ∩ ⋃ i = 1 1 B i = ⋃ i = 1 1 ( A ∩ B i ) A ∩ B 1 = A ∩ B 1 \begin{align*} A\cap \bigcup_{i=1}^{1}B_{i}&= \bigcup_{i=1}^{1}\left( A \cap B_{i}\right)\\ A\cap B_{1}&=A\cap B_{1}\\ \end{align*} A∩i=1⋃1BiA∩B1=i=1⋃1(A∩Bi)=A∩B1
∴ P ( 1 ) ~~~~~~~~~~~~~~~~~~~~\therefore P\left( 1 \right) ∴P(1) 为真;
归纳假设:设 P ( k ) P\left( k \right) P(k)为真,即:
A ∩ ⋃ i = 1 k B i = ⋃ i = 1 k ( A ∩ B i ) \begin{align*} A\cap \bigcup_{i=1}^{k}B_{i}= \bigcup_{i=1}^{k}\left( A \cap B_{i}\right)\\ \end{align*} A∩i=1⋃kBi=i=1⋃k(A∩Bi)
归纳步骤:当 n = k + 1 n=k+1 n=k+1时,设 z ∈ ( A ∩ ⋃ i = 1 k B i ) z\in \left(A\cap{\textstyle \bigcup_{i=1}^{k}} B_{i}\right) z∈(A∩⋃i=1kBi),即:
z ∈ [ A ∩ ( ⋃ i = 1 k B i ∪ B k + 1 ) ] ⇔ ( z ∈ A ) ∧ [ ( z ∈ ⋃ i = 1 k B i ) ∨ ( z ∈ B k + 1 ) ] ⇔ [ ( z ∈ A ) ∧ ( z ∈ ⋃ i = 1 k B i ) ] ∨ [ ( z ∈ A ) ∧ ( z ∈ B k + 1 ) ] ⇔ [ z ∈ ( A ∩ ⋃ i = 1 k B i ) ] ∨ [ z ∈ ( A ∩ B k + 1 ) ] ⇔ z ∈ [ ( A ∩ ⋃ i = 1 k B i ) ∪ ( A ∩ B k + 1 ) ] ⇔ z ∈ [ ( A ∩ B 1 ) ∪ ( A ∩ B 1 ) ∪ ⋯ ∪ ( A ∩ B k ) ∪ ( A ∩ B k + 1 ) ] ⇔ z ∈ ⋃ i = 1 k + 1 ( A ∩ B i ) \begin{align*} &z\in \left[A\cap \left( {\textstyle \bigcup_{i=1}^{k}}B_{i} \cup B_{k+1}\right)\right] \\ \Leftrightarrow &\left( z\in A \right)\wedge \left[ \left( z\in {\textstyle \bigcup_{i=1}^{k}} B_{i}\right) \vee \left(z\in B_{k+1}\right) \right] \\ \Leftrightarrow &\left[\left(z\in A \right)\wedge \left( z\in {\textstyle \bigcup_{i=1}^{k}} B_{i}\right) \right]\vee\left[\left(z\in A \right)\wedge \left( z\in B_{k+1}\right) \right]\\ \Leftrightarrow &\left[z\in \left(A \cap {\textstyle \bigcup_{i=1}^{k}} B_{i}\right) \right]\vee\left[z\in \left( A \cap B_{k+1}\right) \right]\\ \Leftrightarrow &z\in \left[\left(A \cap {\textstyle \bigcup_{i=1}^{k}} B_{i}\right) \cup\left( A \cap B_{k+1}\right) \right]\\ \Leftrightarrow &z \in \left[ \left( A \cap B_{1} \right) \cup \left( A \cap B_{1} \right)\cup \cdots \cup\left( A \cap B_{k} \right) \cup\left( A \cap B_{k+1}\right)\right]\\ \Leftrightarrow &z \in {\textstyle \bigcup_{i=1}^{k+1}} \left( A \cap B_{i}\right) \\ \end{align*} ⇔⇔⇔⇔⇔⇔z∈[A∩(⋃i=1kBi∪Bk+1)](z∈A)∧[(z∈⋃i=1kBi)∨(z∈Bk+1)][(z∈A)∧(z∈⋃i=1kBi)]∨[(z∈A)∧(z∈Bk+1)][z∈(A∩⋃i=1kBi)]∨[z∈(A∩Bk+1)]z∈[(A∩⋃i=1kBi)∪(A∩Bk+1)]z∈[(A∩B1)∪(A∩B1)∪⋯∪(A∩Bk)∪(A∩Bk+1)]z∈⋃i=1k+1(A∩Bi)
~~~~~~~~ 因此,可知 P ( n ) P\left( n \right) P(n)蕴涵 P ( n + 1 ) P\left( n+1 \right) P(n+1),
综上所述,对于任意$ n\ge1$, P ( n ) P\left( n \right) P(n)都为真。
Proof:数学归纳法:
~~~~~~~~ 令 P ( n ) P\left( n \right) P(n)为:
∑ 1 n k ⋅ k ! = ( n + 1 ) ! − 1 ( ∀ n ≥ 1 ) \begin{align*} \sum_{1}^{n}k\cdot k!=\left( n+1\right)! -1 ~~~~ \left ( \forall n \ge 1\right )\\ \end{align*} 1∑nk⋅k!=(n+1)!−1 (∀n≥1)
归纳基础: ∵ \because ∵ 当 n = 1 n=1 n=1时,
∑ 1 1 k ⋅ k ! = 1 × 1 = ( 1 + 1 ) ! − 1 = 1 \begin{align*} \sum_{1}^{1}k\cdot k!=1\times 1 = \left( 1+1\right)! -1 =1\\ \end{align*} 1∑1k⋅k!=1×1=(1+1)!−1=1
∴ P ( 1 ) ~~~~~~~~~~~~~~~~~~~~\therefore P\left( 1 \right) ∴P(1) 为真;
归纳假设:设 P ( m ) P\left( m \right) P(m)为真,即:
∑ 1 m k ⋅ k ! = ( m + 1 ) ! − 1 ( m ≥ 1 ) \begin{align*} \sum_{1}^{m}k\cdot k!=\left( m+1\right)! -1~~~~ \left ( m \ge 1\right )\\ \end{align*} 1∑mk⋅k!=(m+1)!−1 (m≥1)
归纳步骤:当 n = m + 1 n=m+1 n=m+1时,方程两边同时加上 ( m + 1 ) ( m + 1 ) ! \left(m+1\right)\left(m+1\right)! (m+1)(m+1)!,
∑ 1 m k ⋅ k ! + ( m + 1 ) ( m + 1 ) ! = ( m + 1 ) ! − 1 + ( m + 1 ) ( m + 1 ) ! ∑ 1 m + 1 k ⋅ k ! = ( m + 2 ) ! − 1 \begin{align*} \sum_{1}^{m}k\cdot k!+\left(m+1\right)\left(m+1\right)!&=\left( m+1\right)! -1+\left(m+1\right)\left(m+1\right)! \\ \sum_{1}^{m+1}k\cdot k!&=\left( m+2\right)! -1 \\ \end{align*} 1∑mk⋅k!+(m+1)(m+1)!1∑m+1k⋅k!=(m+1)!−1+(m+1)(m+1)!=(m+2)!−1
~~~~~~~~ 因此,可知 P ( n ) P\left( n \right) P(n)蕴涵 P ( n + 1 ) P\left( n+1 \right) P(n+1),
综上所述,对于任意$ n\ge1$, P ( n ) P\left( n \right) P(n)都为真。
Proof:数学归纳法:
~~~~~~~~ 令 P ( n ) P\left( n \right) P(n)为:
0 3 + 1 3 + 2 3 + ⋯ + n 3 = ( n ( n + 1 ) 2 ) 2 ( ∀ n ≥ 0 ) \begin{align*} 0^{3}+1^{3}+2^{3}+\cdots +n^{3}=\left ( \frac{n \left ( n+1 \right )}{2}\right )^{2} ~~~~ \left ( \forall n \ge 0 \right )\\ \end{align*} 03+13+23+⋯+n3=(2n(n+1))2 (∀n≥0)
归纳基础: ∵ \because ∵ 当 n = 0 n=0 n=0时,
0 3 = ( 0 ( 0 + 1 ) 2 ) 2 = 0 \begin{align*} 0^{3}=\left ( \frac{0 \left ( 0+1 \right )}{2}\right )^{2}=0\\ \end{align*} 03=(20(0+1))2=0
∴ P ( 0 ) ~~~~~~~~~~~~~~~~~~~~\therefore P\left( 0 \right) ∴P(0) 为真;
归纳假设:设 P ( k ) P\left( k \right) P(k)为真,即:
0 3 + 1 3 + 2 3 + ⋯ + k 3 = ( k ( k + 1 ) 2 ) 2 ( k ∈ n ) \begin{align*} 0^{3}+1^{3}+2^{3}+\cdots +k^{3}=\left ( \frac{k \left ( k+1 \right )}{2}\right )^{2} ~~~~ \left ( k \in n \right )\\ \end{align*} 03+13+23+⋯+k3=(2k(k+1))2 (k∈n)
归纳步骤:当 n = k + 1 n=k+1 n=k+1时,方程两边同时加上 ( k + 1 ) 3 \left(k+1\right)^{3} (k+1)3,
0 3 + 1 3 + 2 3 + ⋯ + k 3 + ( k + 1 ) 3 = ( k ( k + 1 ) 2 ) 2 + ( k + 1 ) 3 = k 2 ( k + 1 ) 2 4 + ( 4 k + 4 ) ( k + 1 ) 2 4 = ( ( k + 1 ) ( k + 2 ) 2 ) 2 \begin{align*} 0^{3}+1^{3}+2^{3}+\cdots +k^{3}+\left( k+1\right)^{3}&=\left ( \frac{k \left ( k+1 \right )}{2}\right )^{2} +\left( k+1\right)^{3}\\ &=\frac{k^{2} \left( k +1 \right)^{2}}{4}+ \frac{\left( 4 k + 4 \right) \left( k +1 \right)^{2}}{4}\\ &=\left( \frac{\left( k+1\right) \left( k+2\right)}{2}\right)^{2}\\ \end{align*} 03+13+23+⋯+k3+(k+1)3=(2k(k+1))2+(k+1)3=4k2(k+1)2+4(4k+4)(k+1)2=(2(k+1)(k+2))2
~~~~~~~~ 因此,可知 P ( n ) P\left( n \right) P(n)蕴涵 P ( n + 1 ) P\left( n+1 \right) P(n+1),
综上所述,对于任意 n ≥ 0 n \ge 0 n≥0, P ( n ) P\left( n \right) P(n)都为真。
Proof:数学归纳法:
~~~~~~~~ 令 P ( n ) P\left( n \right) P(n)为:
1 ⋅ 2 + 2 ⋅ 3 + 3 ⋅ 4 + ⋯ + n ( n + 1 ) = n ( n + 1 ) ( n + 2 ) 3 ( ∀ n ≥ 1 ) \begin{align*} 1\cdot 2+2\cdot 3 + 3\cdot 4+\cdots +n\left( n+1\right)=\frac{n\left( n+1\right)\left( n+2\right)}{3} ~~~~ \left ( \forall n \ge 1 \right )\\ \end{align*} 1⋅2+2⋅3+3⋅4+⋯+n(n+1)=3n(n+1)(n+2) (∀n≥1)
归纳基础: ∵ \because ∵ 当 n = 1 n=1 n=1时,
1 ⋅ 2 = 1 ( 1 + 1 ) ( 1 + 2 ) 3 = 2 \begin{align*} 1\cdot 2=\frac{1\left( 1+1\right)\left( 1+2\right)}{3}=2\\ \end{align*} 1⋅2=31(1+1)(1+2)=2
∴ P ( 1 ) ~~~~~~~~~~~~~~~~~~~~\therefore P\left( 1 \right) ∴P(1) 为真;
归纳假设:设 P ( k ) P\left( k \right) P(k)为真,即:
1 ⋅ 2 + 2 ⋅ 3 + 3 ⋅ 4 + ⋯ + k ( k + 1 ) = k ( k + 1 ) ( k + 2 ) 3 ( k ∈ n ) ) \begin{align*} 1\cdot 2+2\cdot 3 + 3\cdot 4+\cdots +k\left( k+1\right)=\frac{k\left( k+1\right)\left( k+2\right)}{3} ~~~~ \left (k \in n \right ))\\ \end{align*} 1⋅2+2⋅3+3⋅4+⋯+k(k+1)=3k(k+1)(k+2) (k∈n))
归纳步骤:当 n = k + 1 n=k+1 n=k+1时,方程两边同时加上 ( k + 1 ) 3 \left(k+1\right)^{3} (k+1)3,
1 ⋅ 2 + 2 ⋅ 3 + 3 ⋅ 4 + ⋯ + k ( k + 1 ) + ( k + 1 ) ( k + 2 ) = k ( k + 1 ) ( k + 2 ) 3 + ( k + 1 ) ( k + 2 ) = k ( k + 1 ) ( k + 2 ) 3 + 3 ( k + 1 ) ( k + 2 ) 3 = ( k + 1 ) ( k + 2 ) ( k + 3 ) 3 \begin{align*} 1\cdot 2+2\cdot 3 + 3\cdot 4+\cdots +k\left( k+1\right)+\left(k+1\right)\left( k+2\right)&=\frac{k\left( k+1\right)\left( k+2\right)}{3}+\left(k+1\right)\left( k+2\right)\\ &=\frac{k\left( k+1\right)\left( k+2\right)}{3}+\frac{3\left( k+1\right)\left( k+2\right)}{3}\\ &=\frac{\left( k+1\right)\left( k+2\right)\left( k+3\right)}{3}\\ \end{align*} 1⋅2+2⋅3+3⋅4+⋯+k(k+1)+(k+1)(k+2)=3k(k+1)(k+2)+(k+1)(k+2)=3k(k+1)(k+2)+33(k+1)(k+2)=3(k+1)(k+2)(k+3)
~~~~~~~~ 因此,可知 P ( n ) P\left( n \right) P(n)蕴涵 P ( n + 1 ) P\left( n+1 \right) P(n+1),
综上所述,对于任意 n ≥ 1 n \ge 1 n≥1, P ( n ) P\left( n \right) P(n)都为真。
----以上为个人思考与见解,有误请指点,有想法也可联系交流
~~~~~~~~~~~~~~ 谢谢观看!