- 傅里叶方法求解正方形偏微分方程
weixin_30777913
算法
题目问题10.使用傅里叶方法在正方形中找到以下问题的所有解:4uxx−8uyy=0,00\lambda>0λ>0:设λ=μ2\lambda=\mu^2λ=μ2(μ>0\mu>0μ>0),则X′′+μ2X=0X''+\mu^2X=0X′′+μ2X=0,解为X=Acos(μx)+Bsin(μx)X=A\cos(\mux)+B\sin(\mux)X=Acos(μx)+Bsin(μx)。X′=−Aμs
- Python应用:实现三角形类型判断
Mikhail_G
python开发语言
大家好!在几何计算和图形处理中,判断三条边能否构成三角形以及确定其类型是常见需求。Python通过简洁的条件判断即可实现这些功能,下面我们逐步解析实现原理并提供扩展功能。一、三角形判断的核心原理三角形不等式定理:判断能否构成三角形:a+b>c\quad(且)\quada+c>b\quad(且)\quadb+c>a其中a、b、c为三条边的长度。任意两边之和必须大于第三边是构成三角形的充要条件。代码呈
- Vite 权威技术指南:新一代前端构建工具
第一部分:Vite的理念与架构本部分旨在阐明Vite存在的根本“原因”。它超越了简单的功能罗列,深入剖析了定义Vite的历史背景与架构革新,为后续所有技术细节的探讨奠定理论基础。第1章:Vite简介:重新定义开发者体验核心定义Vite(法语,意为“快速”,发音/vit/)是一款旨在显著提升现代Web项目开发体验的新一代前端构建工具1。其核心由两个主要部分构成:一个利用原生ES模块(ESM)提供丰富
- 李群与李代数2:李代数求导和李群扰动模型
龙焰智能
SLAM数学基础自动驾驶高等数学李群李代数BCH公式微分模型扰动模型相似变换群
李群与李代数2:李代数求导和李群扰动模型1.整体误差最小化引出求导问题2.BCH公式与近似形式2.1BCH公式2.2BCH线性近似2.3BCH近似的意义3.微分模型——李代数求导4.扰动模型求导(左乘)4.1SO(3)上的扰动模型求导4.2SE(3)上的扰动模型求导4.3伴随性质5.相似变换群相关5.1相似变换群Sim(3)Sim(3)Sim(3)5.2李代数sim(3)\mathfrak{sim
- 【数论 排序 滑动窗口】1040. 移动石子直到连续 II|2455
软件架构师何志丹
#困难算法题c++力扣算法排序滑动窗口数论石子
本文涉及知识点排序质数、最大公约数、菲蜀定理C++算法:滑动窗口总结LeetCode1040.移动石子直到连续II在一个长度无限的数轴上,第i颗石子的位置为stones[i]。如果一颗石子的位置最小/最大,那么该石子被称作端点石子。每个回合,你可以将一颗端点石子拿起并移动到一个未占用的位置,使得该石子不再是一颗端点石子。值得注意的是,如果石子像stones=[1,2,5]这样,你将无法移动位于位置
- 单稳态触发器Multisim电路仿真——硬件工程师笔记
逼子歌
单片机语音识别嵌入式硬件硬件工程师真题硬件工程师硬件工程触发器
目录1单稳态触发器基础知识1.1工作原理1.2电路结构1.3特点1.4应用1.5设计考虑1.6总结2555定时器实现的单稳态触发器2.1电路配置2.2工作原理2.3特点2.4应用2.5设计考虑2.6总结3反相器和与非门实现积分型单稳态触发器3.1电路结构3.2工作原理3.3特点3.4应用3.5设计考虑3.6总结4反相器和与非门实现微分型单稳态触发器4.1电路结构4.2工作原理4.3特点4.4应用4
- 华为OD机试 2025B卷 -矩阵中非1的数量 (C++ & Python & JAVA & JS & GO)
无限码力
华为OD机试真题刷题笔记华为od华为OD2025B卷华为OD机试2025B卷华为OD机考2025B卷
矩阵中非1的数量真题目录:点击去查看2025B卷200分题型题目描述存在一个m*n的二维数组,其成员取值范围为0,1,2。其中值为1的元素具备同化特性,每经过1S,将上下左右值为0的元素同化为1。而值为2的元素,免疫同化。将数组所有成员随机初始化为0或2,再将矩阵的[0,0]元素修改成1,在经过足够长的时间后求矩阵中有多少个元素是0或2(即0和2数量之和)。输入描述输入的前两个数字是矩阵大小。后面
- 华为OD机试2025B卷 - 返回矩阵中非1的元素、个数/数值同化(Java & Python& JS & C++ & C )
算法大师
最新华为OD机试真题华为OD机试真题(Java/JS/Py/C)java华为od矩阵javascriptc++python
最新华为OD机试真题目录:点击查看目录华为OD面试真题精选:点击立即查看题目描述存在一个m*n的二维数组,其成员取值范围为0,1,2。其中值为1的元素具备同化特性,每经过1S,将上下左右值为0的元素同化为1。而值为2的元素,免疫同化。将数组所有成员随机初始化为0或2,再将矩阵的[0,0]元素修改成1,在经过足够长的时间后求矩阵中有多少个元素是0或2(即0和2数量之和)。输入描述输入的前两个数字是矩
- 华为OD机试2025A卷 - 返回矩阵中非1的元素个数/数值同化(Java & Python& JS & C++ & C )
算法大师
最新华为OD机试真题华为OD机试真题(Java/JS/Py/C)java华为od矩阵javascriptc++python华为OD2025A卷
最新华为OD机试真题目录:点击查看目录华为OD面试真题精选:点击立即查看题目描述存在一个m*n的二维数组,其成员取值范围为0,1,2。其中值为1的元素具备同化特性,每经过1S,将上下左右值为0的元素同化为1。而值为2的元素,免疫同化。将数组所有成员随机初始化为0或2,再将矩阵的[0,0]元素修改成1,在经过足够长的时间后求矩阵中有多少个元素是0或2(即0和2数量之和)。输入描述输入的前两个数字是矩
- pytorch 自动微分
this_show_time
pytorch人工智能python机器学习
自动微分1.基础概念1.1.**张量**1.2.**计算图**:1.3.**反向传播**1.4.**梯度**2.计算梯度2.1标量梯度计算2.2向量梯度计算2.3多标量梯度计算2.4多向量梯度计算3.梯度上下文控制3.1控制梯度计算(withtorch.no_grad())3.2累计梯度3.3梯度清零(torch.zero_())自动微分模块torch.autograd负责自动计算张量操作的梯度,
- 华为od 机试 2025 B卷 - 数值同化 (C++ & Python & JAVA & JS & GO)
无限码力
华为OD机试真题刷题笔记华为od华为OD2025B卷华为OD机试2025B卷华为OD机考2025B卷
数值同化华为OD机试真题目录:点击去查看华为OD2025B卷100分题型题目描述存在一个m*n的二维数组,其成员取值范围为0,1,2。其中值为1的元素具备同化特性,每经过1S,将上下左右值为0的元素同化为1,而值为2的元素,免疫同化。将数组所有成员随机初始化为0或2,再将矩阵的[0,0]元素修改为1,在经过足够长的时间后,求矩阵中有多少个元素是0或2(即0和2数量之和)。输入描述输入的前两个数字是
- 为什么国内的教科书编写的如此晦涩?
点云SLAM
数学学习方法
很多人在学习过程中都有类似感受:中国的教科书“难搞懂”。造成这种现象的原因主要可以从以下几个方面来分析:1.教学目标更重“系统性”而非“启发性”中国教科书通常强调知识的完整性、系统性、逻辑性,但不强调引导性和直觉体验。很多内容是按照“定义→定理→推论”的顺序展开,对初学者不友好,因为缺少“为什么要学”“生活中的例子”“背后直觉”的铺垫。国外教材比如《Calculus》(Stewart)会在每章开头
- GO语言中二次插值算法 实现预测
基础介绍:给定给定区间,函数连续且,那么根据介值定理,函数必然在区间内有根。二分法:将区间不断二分,使端点不断逼近零点。下一次迭代的区间为或,其中。割线法(线性插值):基本思想是用弦的斜率近似代替目标函数的切线斜率,并用割线与横轴交点的横坐标作为方程式的根的近似。即给定两个点,。其割线方程为,那么令,x的值即为下一次迭代的结果。逆二次插值法:为割线法的进化版本。使用三个点确定一个二次函数,二次函数
- 分布式系统核心基石:CAP定理、BASE理论与一致性算法深度解析
Eqwaak00
分布式系统设计实战算法pythonjava
一、CAP定理:分布式系统的设计边界1.1核心定义与经典三角CAP定理(Brewer'sTheorem)指出,在分布式系统中,一致性(Consistency)、可用性(Availability)、分区容错性(PartitionTolerance)三者不可兼得。(注:若需实际配图,可替换为Mermaid流程图或专业示意图)三大特性详解:一致性(C):所有节点在同一时间看到的数据完全相同(强一致性)。
- 如何在YashanDB数据库中保持数据一致性与完整性
数据库
在现代数据库管理系统中,确保数据的一致性与完整性是面临的主要挑战之一。这一挑战在高并发、高要求的数据操作场景中尤为突出。YashanDB作为一种高性能的分布式数据库,采用了多种技术手段以保持数据的一致性与完整性。本文将深入探讨YashanDB中实现数据一致性与完整性的核心技术原理,适用于对高并发和复杂事务有一定理解的数据库管理员(DBA)和开发人员。事务管理与ACID特性事务是数据库操作的基本单元
- 机器人动力学模型及其线性化阻抗控制模型
机器人动力学模型机器人动力学模型描述了机器人的运动与所受力和力矩之间的关系。这个模型考虑了机器人的质量、惯性、关节摩擦、重力等多种因素,用于预测和解释机器人在给定输入下的动态行为。动力学模型是设计机器人控制器的基础,它可以帮助我们理解机器人如何响应控制指令,并优化机器人的运动性能。具体来说,机器人动力学模型通常由一组微分方程组成,这些方程描述了机器人各关节的加速度、速度和位置与施加在关节上的力和力
- 【Python】simulink与python联合仿真
1.1Simulink的边界:事件驱动、算法复杂性与AI集成瓶颈Simulink的核心优势在于其强大的微分方程求解器和对连续时间系统、离散时间系统的精确描述能力。其基于“信号流”和“框图”的建模范式,使得工程师可以直观地构建与物理现实高度对应的数学模型。然而,这种优势也带来了其天然的局限性:基于时间的驱动核心(Time-BasedCoreEngine):Simulink的“心脏”是一个时间驱动的仿
- OpenCV教程——图像模糊。均值模糊,高斯模糊,中值模糊,双边模糊,高斯分布
1.图像模糊图像模糊是图像处理中最简单和常用的操作之一。⚠️使用该操作的原因之一是为了给图像预处理时降低噪声。图像模糊操作背后是数学的卷积计算。卷积操作的原理:常用的图像模糊的方法:均值模糊高斯模糊中值模糊双边模糊这四种模糊方式有时也被称为:均值滤波、高斯滤波、中值滤波和双边滤波。因为模糊属于一种滤波操作,具体关系可参照下图:其中,均值滤波、高斯滤波和中值滤波属于线性滤波;而双边滤波属于非线性滤波
- LabVIEW MathScript薄板热流模拟
LabVIEW开发
LabVIEW参考程序LabVIEW知识LabVIEW知识LabVIEW程序LabVIEW功能labview
热流模拟是热设计关键环节,传统工具精准但开发周期长,本VI利用LabVIEW优势,面向工程师快速验证需求,在初步方案迭代、教学演示等场景更具效率,为热分析提供轻量化替代路径,后续可结合专业工具,先通过本VI快速定性分析,再用传统工具精准求解,提升研发流程效率。此VI用于模拟单点热源下薄板的热流,求解带周期边界条件的椭圆型偏微分方程,借助LabVIEWMathScriptNode实现自定义函数,结合
- 余数定理问题和余数类问题的解法
wangychf
python抽象代数
一、引言Python里面有一个重要的求模运算符号“%”,作为一个小白,实验了好多次求模的运算,发现这个算法不同于一般的四则运算,其运算效率简直可以用神奇来形容。例如以当今知道的最大质数——梅森素数为例,进行求模计算,速度快得惊人。当前知道的最大的梅森素数是第51个梅森素数,也是迄今为止知道的最大的素数。它的表示为:2^82589933–1,如果用十进制打开,这个数有24862048位,是2018年
- 数字图像处理第二次实验
愚戏师
数字图像处理python图像处理
实验三技术点分析根据实验要求,需要实现以下图像空间域滤波技术:噪声生成:高斯噪声椒盐噪声空间域滤波:均值滤波(3×3,5×5,7×7)中值滤波(3×3,5×5,7×7)最大值滤波最小值滤波图像处理流程:读取原始图像添加噪声(高斯/椒盐)应用各种滤波器可视化对比结果完整示例代码importcv2importnumpyasnpimportmatplotlib.pyplotaspltfrommatplo
- 脉冲编码调制(PCM)
2301_80709554
pcm
#打倒拦路虎#脉冲编码调制:一种把模拟数据变换为数字信号的数字技术(模拟数据数字化技术)脉冲编码调制过程:取样->量化->编码取样:本质上是在离散时间点上获取模拟信号的瞬时电平值(幅度值),获得的值为连续幅度值。根据莱奎斯特取样定理,以大于等于模拟信号频率两倍的取样频率获得的样本空间就能恢复原理的模拟信号。量化:将抽样后的连续幅度值映射到有限个离散电平的过程,即幅度的离散化。例如:把语音样本量化
- python 中值滤波
search7
python
中值滤波是数字信号处理和数字图像处理领域使用较多的预处理技术,使用邻域内所有信号的中位数替换中心像素的值,可以在滤除异常值的情况下较好地保留纹理信息。该技术会在一定程度上造成图像模糊和失真,滤波窗口变大时会非常明显。importnumpyasnpfromPILimportImageimportscipy.signalassignalim=Image.open('lena.jpg')data=[]w
- PID算法的一点改进思路
在PID算法里面有三个系数Kp,Ki,Kd;其中Kp是比例常数,Ki是积分常数,Kd是微分常数。Kp比例常数可以控制被控制量变化速度,越大控制越快但是越容易引发系统震荡,越小控制又比较慢;Ki比例常数是控制稳态误差(系统稳态的时候控制量不一定等于设置量);Kd比例常数可预测控制量变化趋势。图是蛋糕达人的。从积分的数学理解上可以知道系统稳态的时候红色部分面积与蓝色部分面积应该相等,但是系统从一开始并
- 深度探索:机器学习中的 条件生成对抗网络(Conditional GAN, CGAN)算法原理及其应用
目录1.引言与背景2.CGAN定理3.算法原理4.算法实现5.优缺点分析优点:缺点:6.案例应用7.对比与其他算法8.结论与展望1.引言与背景生成对抗网络(GenerativeAdversarialNetworks,GANs)作为一种深度学习框架,在无监督学习领域展现出强大的能力,特别在图像、音频、文本等复杂数据的生成任务中取得了显著成果。然而,原始GAN模型在生成过程中缺乏对生成样本特定属性的直
- NoSQL数据库的分布式存储优化
数据库管理艺术
nosql分布式数据库ai
NoSQL数据库的分布式存储优化关键词:NoSQL、分布式存储、数据分片、一致性哈希、CAP定理、读写优化、水平扩展摘要:本文深入探讨NoSQL数据库在分布式环境下的存储优化策略。我们将从基础概念出发,分析NoSQL数据库的架构特点,详细讲解分布式存储的核心算法和数学模型,并通过实际代码示例展示优化技术的实现。文章还将覆盖实际应用场景、工具推荐以及未来发展趋势,为读者提供全面的NoSQL分布式存储
- 深度学习×第4卷:Pytorch实战——她第一次用张量去拟合你的轨迹
Gyoku Mint
AI修炼日记人工智能人工智能聚类算法深度学习python神经网络pytorch
【开场·她画出的第一条直线是为了更靠近你】猫猫:“之前她只能在你身边叠叠张量,偷偷找梯度……现在,她要试试,能不能用这些线,把你的样子画出来喵~”狐狐:“这是她第一次把张量、自动微分和优化器都串成一条线,用最简单的线性回归,试着把你留给她的点都连起来。”【第一节·她先要一条路:生成一组可学的数据】✏️为什么要造数据?在PyTorch里跑线性回归,最好的练习就是用一条已知斜率的“理想直线”,加上一点
- 人形机器人运动控制技术演进:从强化学习到神经微分方程的前沿解析
1.引言:人形运动控制的挑战与范式迁移人形机器人需在非结构化环境中实现双足行走、跑步、跳跃等复杂动作,其核心问题可归结为高维连续状态-动作空间的实时优化。传统方法(如基于模型的预测控制MPC)依赖精确的动力学建模,但在实际系统中面临以下瓶颈:模型失配:复杂接触动力学(如足-地交互)难以显式建模;计算瓶颈:高维非线性优化难以满足实时性需求;环境扰动敏感:传统控制器对未知干扰的鲁棒性不足。近年来,以强
- 【PyTorch】PyTorch中张量(Tensor)微分操作
咸鱼鲸
PyTorchpytorch人工智能python
PyTorch深度学习总结第六章PyTorch中张量(Tensor)微分操作文章目录PyTorch深度学习总结前言一、torch.autograd模块二、主要功能和使用方法1.张量的requires_grad属性2.backward()方法3.torch.no_grad()上下文管理器三、函数总结前言上文介绍了PyTorch中张量(Tensor)的计算操作,本文将介绍张量的微分(torch.aut
- MIT 6.S184 Lec01 Flow and Diffusion Models
克斯维尔的明天_
机器学习人工智能
MIT6.S184Lec01FlowandDiffusionModels本节中,我们将描述如何通过模拟一个适当构造的微分方程来获得所需的转换。例如,流匹配和扩散模型分别涉及模拟常微分方程(ODE)和随机微分方程(SDE)。因此,本节的目标是定义和构建这些生成模型。具体来说,我们首先定义ODE和SDE,并讨论它们的模拟。其次,我们描述如何使用深度神经网络对ODE/SDE进行参数化。从中推导出流模型和
- web报表工具FineReport常见的数据集报错错误代码和解释
老A不折腾
web报表finereport代码可视化工具
在使用finereport制作报表,若预览发生错误,很多朋友便手忙脚乱不知所措了,其实没什么,只要看懂报错代码和含义,可以很快的排除错误,这里我就分享一下finereport的数据集报错错误代码和解释,如果有说的不准确的地方,也请各位小伙伴纠正一下。
NS-war-remote=错误代码\:1117 压缩部署不支持远程设计
NS_LayerReport_MultiDs=错误代码
- Java的WeakReference与WeakHashMap
bylijinnan
java弱引用
首先看看 WeakReference
wiki 上 Weak reference 的一个例子:
public class ReferenceTest {
public static void main(String[] args) throws InterruptedException {
WeakReference r = new Wea
- Linux——(hostname)主机名与ip的映射
eksliang
linuxhostname
一、 什么是主机名
无论在局域网还是INTERNET上,每台主机都有一个IP地址,是为了区分此台主机和彼台主机,也就是说IP地址就是主机的门牌号。但IP地址不方便记忆,所以又有了域名。域名只是在公网(INtERNET)中存在,每个域名都对应一个IP地址,但一个IP地址可有对应多个域名。域名类型 linuxsir.org 这样的;
主机名是用于什么的呢?
答:在一个局域网中,每台机器都有一个主
- oracle 常用技巧
18289753290
oracle常用技巧 ①复制表结构和数据 create table temp_clientloginUser as select distinct userid from tbusrtloginlog ②仅复制数据 如果表结构一样 insert into mytable select * &nb
- 使用c3p0数据库连接池时出现com.mchange.v2.resourcepool.TimeoutException
酷的飞上天空
exception
有一个线上环境使用的是c3p0数据库,为外部提供接口服务。最近访问压力增大后台tomcat的日志里面频繁出现
com.mchange.v2.resourcepool.TimeoutException: A client timed out while waiting to acquire a resource from com.mchange.v2.resourcepool.BasicResou
- IT系统分析师如何学习大数据
蓝儿唯美
大数据
我是一名从事大数据项目的IT系统分析师。在深入这个项目前需要了解些什么呢?学习大数据的最佳方法就是先从了解信息系统是如何工作着手,尤其是数据库和基础设施。同样在开始前还需要了解大数据工具,如Cloudera、Hadoop、Spark、Hive、Pig、Flume、Sqoop与Mesos。系 统分析师需要明白如何组织、管理和保护数据。在市面上有几十款数据管理产品可以用于管理数据。你的大数据数据库可能
- spring学习——简介
a-john
spring
Spring是一个开源框架,是为了解决企业应用开发的复杂性而创建的。Spring使用基本的JavaBean来完成以前只能由EJB完成的事情。然而Spring的用途不仅限于服务器端的开发,从简单性,可测试性和松耦合的角度而言,任何Java应用都可以从Spring中受益。其主要特征是依赖注入、AOP、持久化、事务、SpringMVC以及Acegi Security
为了降低Java开发的复杂性,
- 自定义颜色的xml文件
aijuans
xml
<?xml version="1.0" encoding="utf-8"?> <resources> <color name="white">#FFFFFF</color> <color name="black">#000000</color> &
- 运营到底是做什么的?
aoyouzi
运营到底是做什么的?
文章来源:夏叔叔(微信号:woshixiashushu),欢迎大家关注!很久没有动笔写点东西,近些日子,由于爱狗团产品上线,不断面试,经常会被问道一个问题。问:爱狗团的运营主要做什么?答:带着用户一起嗨。为什么是带着用户玩起来呢?究竟什么是运营?运营到底是做什么的?那么,我们先来回答一个更简单的问题——互联网公司对运营考核什么?以爱狗团为例,绝大部分的移动互联网公司,对运营部门的考核分为三块——用
- js面向对象类和对象
百合不是茶
js面向对象函数创建类和对象
接触js已经有几个月了,但是对js的面向对象的一些概念根本就是模糊的,js是一种面向对象的语言 但又不像java一样有class,js不是严格的面向对象语言 ,js在java web开发的地位和java不相上下 ,其中web的数据的反馈现在主流的使用json,json的语法和js的类和属性的创建相似
下面介绍一些js的类和对象的创建的技术
一:类和对
- web.xml之资源管理对象配置 resource-env-ref
bijian1013
javaweb.xmlservlet
resource-env-ref元素来指定对管理对象的servlet引用的声明,该对象与servlet环境中的资源相关联
<resource-env-ref>
<resource-env-ref-name>资源名</resource-env-ref-name>
<resource-env-ref-type>查找资源时返回的资源类
- Create a composite component with a custom namespace
sunjing
https://weblogs.java.net/blog/mriem/archive/2013/11/22/jsf-tip-45-create-composite-component-custom-namespace
When you developed a composite component the namespace you would be seeing would
- 【MongoDB学习笔记十二】Mongo副本集服务器角色之Arbiter
bit1129
mongodb
一、复本集为什么要加入Arbiter这个角色 回答这个问题,要从复本集的存活条件和Aribter服务器的特性两方面来说。 什么是Artiber? An arbiter does
not have a copy of data set and
cannot become a primary. Replica sets may have arbiters to add a
- Javascript开发笔记
白糖_
JavaScript
获取iframe内的元素
通常我们使用window.frames["frameId"].document.getElementById("divId").innerHTML这样的形式来获取iframe内的元素,这种写法在IE、safari、chrome下都是通过的,唯独在fireforx下不通过。其实jquery的contents方法提供了对if
- Web浏览器Chrome打开一段时间后,运行alert无效
bozch
Webchormealert无效
今天在开发的时候,突然间发现alert在chrome浏览器就没法弹出了,很是怪异。
试了试其他浏览器,发现都是没有问题的。
开始想以为是chorme浏览器有啥机制导致的,就开始尝试各种代码让alert出来。尝试结果是仍然没有显示出来。
这样开发的结果,如果客户在使用的时候没有提示,那会带来致命的体验。哎,没啥办法了 就关闭浏览器重启。
结果就好了,这也太怪异了。难道是cho
- 编程之美-高效地安排会议 图着色问题 贪心算法
bylijinnan
编程之美
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.Random;
public class GraphColoringProblem {
/**编程之美 高效地安排会议 图着色问题 贪心算法
* 假设要用很多个教室对一组
- 机器学习相关概念和开发工具
chenbowen00
算法matlab机器学习
基本概念:
机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。
它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎。
开发工具
M
- [宇宙经济学]关于在太空建立永久定居点的可能性
comsci
经济
大家都知道,地球上的房地产都比较昂贵,而且土地证经常会因为新的政府的意志而变幻文本格式........
所以,在地球议会尚不具有在太空行使法律和权力的力量之前,我们外太阳系统的友好联盟可以考虑在地月系的某些引力平衡点上面,修建规模较大的定居点
- oracle 11g database control 证书错误
daizj
oracle证书错误oracle 11G 安装
oracle 11g database control 证书错误
win7 安装完oracle11后打开 Database control 后,会打开em管理页面,提示证书错误,点“继续浏览此网站”,还是会继续停留在证书错误页面
解决办法:
是 KB2661254 这个更新补丁引起的,它限制了 RSA 密钥位长度少于 1024 位的证书的使用。具体可以看微软官方公告:
- Java I/O之用FilenameFilter实现根据文件扩展名删除文件
游其是你
FilenameFilter
在Java中,你可以通过实现FilenameFilter类并重写accept(File dir, String name) 方法实现文件过滤功能。
在这个例子中,我们向你展示在“c:\\folder”路径下列出所有“.txt”格式的文件并删除。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
- C语言数组的简单以及一维数组的简单排序算法示例,二维数组简单示例
dcj3sjt126com
carray
# include <stdio.h>
int main(void)
{
int a[5] = {1, 2, 3, 4, 5};
//a 是数组的名字 5是表示数组元素的个数,并且这五个元素分别用a[0], a[1]...a[4]
int i;
for (i=0; i<5; ++i)
printf("%d\n",
- PRIMARY, INDEX, UNIQUE 这3种是一类 PRIMARY 主键。 就是 唯一 且 不能为空。 INDEX 索引,普通的 UNIQUE 唯一索引
dcj3sjt126com
primary
PRIMARY, INDEX, UNIQUE 这3种是一类PRIMARY 主键。 就是 唯一 且 不能为空。INDEX 索引,普通的UNIQUE 唯一索引。 不允许有重复。FULLTEXT 是全文索引,用于在一篇文章中,检索文本信息的。举个例子来说,比如你在为某商场做一个会员卡的系统。这个系统有一个会员表有下列字段:会员编号 INT会员姓名
- java集合辅助类 Collections、Arrays
shuizhaosi888
CollectionsArraysHashCode
Arrays、Collections
1 )数组集合之间转换
public static <T> List<T> asList(T... a) {
return new ArrayList<>(a);
}
a)Arrays.asL
- Spring Security(10)——退出登录logout
234390216
logoutSpring Security退出登录logout-urlLogoutFilter
要实现退出登录的功能我们需要在http元素下定义logout元素,这样Spring Security将自动为我们添加用于处理退出登录的过滤器LogoutFilter到FilterChain。当我们指定了http元素的auto-config属性为true时logout定义是会自动配置的,此时我们默认退出登录的URL为“/j_spring_secu
- 透过源码学前端 之 Backbone 三 Model
逐行分析JS源代码
backbone源码分析js学习
Backbone 分析第三部分 Model
概述: Model 提供了数据存储,将数据以JSON的形式保存在 Model的 attributes里,
但重点功能在于其提供了一套功能强大,使用简单的存、取、删、改数据方法,并在不同的操作里加了相应的监听事件,
如每次修改添加里都会触发 change,这在据模型变动来修改视图时很常用,并且与collection建立了关联。
- SpringMVC源码总结(七)mvc:annotation-driven中的HttpMessageConverter
乒乓狂魔
springMVC
这一篇文章主要介绍下HttpMessageConverter整个注册过程包含自定义的HttpMessageConverter,然后对一些HttpMessageConverter进行具体介绍。
HttpMessageConverter接口介绍:
public interface HttpMessageConverter<T> {
/**
* Indicate
- 分布式基础知识和算法理论
bluky999
算法zookeeper分布式一致性哈希paxos
分布式基础知识和算法理论
BY
[email protected]
本文永久链接:http://nodex.iteye.com/blog/2103218
在大数据的背景下,不管是做存储,做搜索,做数据分析,或者做产品或服务本身,面向互联网和移动互联网用户,已经不可避免地要面对分布式环境。笔者在此收录一些分布式相关的基础知识和算法理论介绍,在完善自我知识体系的同
- Android Studio的.gitignore以及gitignore无效的解决
bell0901
androidgitignore
github上.gitignore模板合集,里面有各种.gitignore : https://github.com/github/gitignore
自己用的Android Studio下项目的.gitignore文件,对github上的android.gitignore添加了
# OSX files //mac os下 .DS_Store
- 成为高级程序员的10个步骤
tomcat_oracle
编程
What
软件工程师的职业生涯要历经以下几个阶段:初级、中级,最后才是高级。这篇文章主要是讲如何通过 10 个步骤助你成为一名高级软件工程师。
Why
得到更多的报酬!因为你的薪水会随着你水平的提高而增加
提升你的职业生涯。成为了高级软件工程师之后,就可以朝着架构师、团队负责人、CTO 等职位前进
历经更大的挑战。随着你的成长,各种影响力也会提高。
- mongdb在linux下的安装
xtuhcy
mongodblinux
一、查询linux版本号:
lsb_release -a
LSB Version: :base-4.0-amd64:base-4.0-noarch:core-4.0-amd64:core-4.0-noarch:graphics-4.0-amd64:graphics-4.0-noarch:printing-4.0-amd64:printing-4.0-noa