大众点评各城市热门餐厅数据爬虫抓取

大众点评抓取

网址链接

http://www.dianping.com/shoplist/shopRank/pcChannelRankingV2?rankId=fce2e3a36450422b7fad3f2b90370efd71862f838d1255ea693b953b1d49c7c0


通过观察每个城市的链接主要区别于ranKld,每个城市有特定的ID,因此先获取到相应城市的ID,便可进行后续抓取。

获取到的城市ID为:

["上海","fce2e3a36450422b7fad3f2b90370efd71862f838d1255ea693b953b1d49c7c0"],

["北京","d5036cf54fcb57e9dceb9fefe3917fff71862f838d1255ea693b953b1d49c7c0"],

["广州","e749e3e04032ee6b165fbea6fe2dafab71862f838d1255ea693b953b1d49c7c0"],

["深圳","e049aa251858f43d095fc4c61d62a9ec71862f838d1255ea693b953b1d49c7c0"],

["天津","2e5d0080237ff3c8f5b5d3f315c7c4a508e25c702ab1b810071e8e2c39502be1"],

["杭州","91621282e559e9fc9c5b3e816cb1619c71862f838d1255ea693b953b1d49c7c0"]

,["南京","d6339a01dbd98141f8e684e1ad8af5c871862f838d1255ea693b953b1d49c7c0"],

["苏州","536e0e568df850d1e6ba74b0cf72e19771862f838d1255ea693b953b1d49c7c0"],

["成都","c950bc35ad04316c76e89bf2dc86bfe071862f838d1255ea693b953b1d49c7c0"],

["武汉","d96a24c312ed7b96fcc0cedd6c08f68c08e25c702ab1b810071e8e2c39502be1"],

["重庆","6229984ceb373efb8fd1beec7eb4dcfd71862f838d1255ea693b953b1d49c7c0"],

["西安","ad66274c7f5f8d27ffd7f6b39ec447b608e25c702ab1b810071e8e2c39502be1"]

抓取页面


抓取分析

通过浏览器分析可发现该网站通过Ajax请求,所有数据来源于:

http://www.dianping.com/mylist/ajax/shoprank?rankId=fce2e3a36450422b7fad3f2b90370efd71862f838d1255ea693b953b1d49c7c0

该链接同之前请求一样,只需要替换rankId便可进行多城市数据获取。最终抓取的数据只需要解析json边可获得所需字段,由于大众没有特别反爬限制,只需要不断轮换userAgent便可绕过反爬。

我们对上海,北京,广州,深圳,天津,杭州,南京,苏州,成都,武汉,重庆,西安等城市的前100家商铺进行数据获取,并分析最终所获取数据集,见《大众点评数据分析》

# 请求头

USER_AGENT_LIST = [

    "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/22.0.1207.1 Safari/537.1",

    "Mozilla/5.0 (X11; CrOS i686 2268.111.0) AppleWebKit/536.11 (KHTML, like Gecko) Chrome/20.0.1132.57 Safari/536.11",

    "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.6 (KHTML, like Gecko) Chrome/20.0.1092.0 Safari/536.6",

    "Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.6 (KHTML, like Gecko) Chrome/20.0.1090.0 Safari/536.6",

    "Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/19.77.34.5 Safari/537.1",

    "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/536.5 (KHTML, like Gecko) Chrome/19.0.1084.9 Safari/536.5"]

head = {

'User-Agent': '{0}'.format(random.sample(USER_AGENT_LIST, 1)[0])  # 随机获取

}

代码展示:

#!/usr/bin/env python

# encoding: utf-8

"""

@version: v1.0

@author: W_H_J

@license: Apache Licence

@contact: [email protected]

@site:

@software: PyCharm

@file: dazhongFood.py

@time: 2018/7/18 15:46

@describe: 大众点评美食抓取list_city :城市的ID号码,依次是:上海,北京,广州,深圳,天津,杭州,南京,苏州,成都,武汉,重庆,西安"""

import json

import random

import requests

from base.dbhelperimport DBHelper

# 城市列表

list_city = [["上海","fce2e3a36450422b7fad3f2b90370efd71862f838d1255ea693b953b1d49c7c0"],["北京","d5036cf54fcb57e9dceb9fefe3917fff71862f838d1255ea693b953b1d49c7c0"],["广州","e749e3e04032ee6b165fbea6fe2dafab71862f838d1255ea693b953b1d49c7c0"],["深圳","e049aa251858f43d095fc4c61d62a9ec71862f838d1255ea693b953b1d49c7c0"],["天津","2e5d0080237ff3c8f5b5d3f315c7c4a508e25c702ab1b810071e8e2c39502be1"],["杭州","91621282e559e9fc9c5b3e816cb1619c71862f838d1255ea693b953b1d49c7c0"],["南京","d6339a01dbd98141f8e684e1ad8af5c871862f838d1255ea693b953b1d49c7c0"],["苏州","536e0e568df850d1e6ba74b0cf72e19771862f838d1255ea693b953b1d49c7c0"],["成都","c950bc35ad04316c76e89bf2dc86bfe071862f838d1255ea693b953b1d49c7c0"],["武汉","d96a24c312ed7b96fcc0cedd6c08f68c08e25c702ab1b810071e8e2c39502be1"],["重庆","6229984ceb373efb8fd1beec7eb4dcfd71862f838d1255ea693b953b1d49c7c0"],["西安","ad66274c7f5f8d27ffd7f6b39ec447b608e25c702ab1b810071e8e2c39502be1"]]

# 请求头

USER_AGENT_LIST = [

"Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/22.0.1207.1 Safari/537.1",

    "Mozilla/5.0 (X11; CrOS i686 2268.111.0) AppleWebKit/536.11 (KHTML, like Gecko) Chrome/20.0.1132.57 Safari/536.11",

    "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.6 (KHTML, like Gecko) Chrome/20.0.1092.0 Safari/536.6",

    "Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.6 (KHTML, like Gecko) Chrome/20.0.1090.0 Safari/536.6",

    "Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/19.77.34.5 Safari/537.1",

    "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/536.5 (KHTML, like Gecko) Chrome/19.0.1084.9 Safari/536.5"]

head = {

'User-Agent':'{0}'.format(random.sample(USER_AGENT_LIST, 1)[0])# 随机获取

}

flag =0

code =0

# 解析

def findFood(city,data):

global flag,code

mysql_db = DBHelper()

for datain json.loads(data)["shopBeans"]:

flag +=1

        # 详细地址

        shopAddress =data["address"]

# 人均消费

        avgPrice =data["avgPrice"]

# 商铺图片

        defaultPic =data["defaultPic"]

# 分类名称

        mainCategoryName =data["mainCategoryName"]

# 所在区域名称

        mainRegionName =data["mainRegionName"]

# 口味评分

        tasteScore =data["score1"]

# 环境评分

        environmentScore =data["score2"]

# 服务评分

        serviceScore =data["score3"]

# 商品编号

        shopId =data["shopId"]

# 商铺网址

        shopUrl ="http://www.dianping.com/shop/"+shopId

# 商铺名称

        shopName =data["shopName"]

# 商铺星级

        shopPower =data["shopPower"]

sql ='''insert into dazhongfood(shopUrl,shopName, shopId, shopPower, mainRegionName, mainCategoryName, tasteScore, environmentScore, serviceScore, avgPrice, shopAddress, defaultPic, city) VALUES (%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)'''

        params = (shopUrl,shopName, shopId, shopPower, mainRegionName, mainCategoryName, tasteScore, environmentScore, serviceScore, avgPrice, shopAddress, defaultPic, city)

try:

mysql_db.insert(sql,*params)

code +=1

            print("----- 插入:", code, "条------")

except:

print("已存在不再重复插入!!")

print("总条数:", flag)

# 抓取

def foodSpider(city_list):

city =city_list[0]

url =city_list[1]

base_url ="http://www.dianping.com/mylist/ajax/shoprank?rankId="+url

html = requests.get(base_url, headers=head)

findFood(city=city, data=str(html.text))

if __name__ =='__main__':

for city_datain list_city:

foodSpider(city_data)

最终获取结果存储至MySQL。(完整数据集见daZhongFood/data)

最终结果


完整代码见github:https://github.com/Liangchengdeye/DaZhongdianping.git

后续后发布对抓取结果的《大众点评热门餐厅抓取与数据分析》,数据分析结果同上见github。

你可能感兴趣的:(大众点评各城市热门餐厅数据爬虫抓取)