- nosql数据库技术与应用知识点
皆过客,揽星河
NoSQLnosql数据库大数据数据分析数据结构非关系型数据库
Nosql知识回顾大数据处理流程数据采集(flume、爬虫、传感器)数据存储(本门课程NoSQL所处的阶段)Hdfs、MongoDB、HBase等数据清洗(入仓)Hive等数据处理、分析(Spark、Flink等)数据可视化数据挖掘、机器学习应用(Python、SparkMLlib等)大数据时代存储的挑战(三高)高并发(同一时间很多人访问)高扩展(要求随时根据需求扩展存储)高效率(要求读写速度快)
- Flume:大规模日志收集与数据传输的利器
傲雪凌霜,松柏长青
后端大数据flume大数据
Flume:大规模日志收集与数据传输的利器在大数据时代,随着各类应用的不断增长,产生了海量的日志和数据。这些数据不仅对业务的健康监控至关重要,还可以通过深入分析,帮助企业做出更好的决策。那么,如何高效地收集、传输和存储这些海量数据,成为了一项重要的挑战。今天我们将深入探讨ApacheFlume,它是如何帮助我们应对这些挑战的。一、Flume概述ApacheFlume是一个分布式、可靠、可扩展的日志
- 解决flume在抽取不断产生的日志文件时,hdfs上出现很多小文件的问题
lzhlizihang
flumehdfs大数据
问题在使用flume时,需要编写conf文件,然后执行,明明sinks已经指定了roll的三个参数:a1.sinks.k1.hdfs.rollInterval=0(根据写入时间来切割)a1.sinks.k1.hdfs.rollSize=0(根据写入的文件大小来切割)a1.sinks.k1.hdfs.rollCount=0(根据Event数量来切割)其中0代表不根据其属性来切割文件但是hdfs上还会
- pyspark kafka mysql_数据平台实践①——Flume+Kafka+SparkStreaming(pyspark)
weixin_39793638
pysparkkafkamysql
蜻蜓点水Flume——数据采集如果说,爬虫是采集外部数据的常用手段的话,那么,Flume就是采集内部数据的常用手段之一(logstash也是这方面的佼佼者)。下面介绍一下Flume的基本构造。Agent:包含Source、Channel和Sink的主体,它是这3个组件的载体,是组成Flume的数据节点。Event:Flume数据传输的基本单元。Source:用来接收Event,并将Event批量传
- 【大数据Big DATA】大数据解决方案,提供完整的大数据采集,大数据存储,大数据处理,具体业务应用解决方案
_晓夏_
JAVA大数据大数据解决方案大数据BIGDATA大数据采集大数据存储大数据处理大数据分析
大数据解决方案是指利用大数据技术,结合企业实际业务需求,为企业提供数据采集、存储、处理、分析和报告等一站式服务,以帮助企业更好地利用大数据提高运营效率、优化决策制定。以下是一些常见的大数据解决方案:一、数据采集数据采集是大数据解决方案的起点,涉及从各种数据源中抓取和收集数据。常见的大数据采集工具包括Flume、Scribd等,这些工具可以帮助企业快速、高效地采集各类数据。二、数据存储大数据存储解决
- 大数据技术之Flume 企业开发案例——自定义 Interceptor(8)
大数据深度洞察
Flumeflume大数据
目录自定义Interceptor1)案例需求2)需求分析3)实现步骤创建一个Maven项目,并引入以下依赖。定义CustomInterceptor类并实现Interceptor接口。编辑flume配置文件分别在hadoop12,hadoop13,hadoop14上启动flume进程,注意先后顺序。在hadoop12使用netcat向localhost:44444发送字母和数字。观察hadoop13
- 大数据基础之Flume——Flume基础及Flume agent配置以及自定义拦截器
Clozzz
Flume大数据flumehadoop
Flume简介Flume用于将多种来源的日志以流的方式传输至Hadoop或者其他目的地 -一种可靠、可用的高效分布式数据收集服务Flume拥有基于数据流上的简单灵活架构,支持容错、故障转移与恢复由Cloudera2009年捐赠给Apache,现为Apache顶级项目Flume架构Client:客户端,数据产生的地方,如Web服务器Event:事件,指通过Agent传输的单个数据包,如日志数据通常对
- Flume介绍及调优
桓桓桓桓
分布式大数据日志搜集
一、概述Flume是Cloudera提供的一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统,Flume支持在日志系统中定制各类数据发送方,用于收集数据;同时,Flume提供对数据进行简单处理,并写到各种数据接受方(可定制)的能力。当前Flume有两个版本Flume0.9X版本的统称Flume-og,Flume1.X版本的统称Flume-ng。由于Flume-ng经过重大重构,与Flu
- 大数据技术之Flume 数据流监控——Ganglia 的安装与部署(11)
大数据深度洞察
Flume大数据flume
目录Flume数据流监控Ganglia的安装与部署Ganglia组件介绍1)安装Ganglia2)在hadoop12修改配置文件/etc/httpd/conf.d/ganglia.conf3)在hadoop12修改配置文件/etc/ganglia/gmetad.conf4)在hadoop12,hadoop13,hadoop14修改配置文件/etc/ganglia/gmond.conf5)在hado
- 大数据技术之Flume
okbin1991
大数据flumejavahadoop开发语言
第1章Flume概述1.1Flume定义Flume是Cloudera提供的一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统。Flume基于流式架构,灵活简单。1.2Flume基础架构Flume组成架构如下图所示。1.2.1AgentAgent是一个JVM进程,它以事件的形式将数据从源头送至目的。Agent主要有3个部分组成,Source、Channel、Sink。1.2.2Sourc
- 错误: 找不到或无法加载主类 org.apache.flume.tools.GetJavaProperty
小波2200013045
flume大数据
[root@master~]#flume-ngversion[root@master~]#cd/usr/local/flume/bin[root@masterbin]#vimflume-ng配置文件中加入红框代码#determineHBASEjava.library.pathandusethatforflumelocalHBASE_CLASSPATH=""localHBASE_JAVA_LIBRA
- flume系列之:批量并行启动、停止、重启flume agent组
快乐骑行^_^
flumeflume系列批量并行启动停止重启flumeagent组
Flume系列之:批量并行启动、停止、重启flumeagent组批量启动flumeagent组批量启动flumeagent组importsubprocessimportthreadingdefrun_command(command):process=subprocess.Popen(command,shell=True)process
- 大数据技术之Flume 企业开发案例——负载均衡和故障转移(6)
大数据深度洞察
Flume大数据flume负载均衡
目录负载均衡和故障转移1)案例需求2)需求分析3)实现步骤负载均衡和故障转移1)案例需求使用Flume1监控一个端口,其sink组中的sink分别对接Flume2和Flume3,采用FailoverSinkProcessor,实现故障转移的功能。2)需求分析故障转移案例3)实现步骤准备工作在/opt/module/flume/job目录下创建group2文件夹[lzl@hadoop12job]$c
- 大数据技术之Flume事务及内部原理(3)
大数据深度洞察
Flumeflume大数据
目录FlumeAgent架构概述FlumeAgent内部工作流程FlumeAgent的配置FlumeAgent内部重要组件ChannelSelectorSinkProcessorApacheFlume是一个分布式的、可靠的、可用的服务,用于有效地收集、聚合和移动大量日志数据。它具有简单灵活的架构,基于流式数据流动模型。Flume主要由三个核心组件组成:Source(源)、Channel(通道)和S
- 从零到一建设数据中台 - 关键技术汇总
我码玄黄
数据中台数据挖掘数据分析大数据
一、数据中台关键技术汇总语言框架:Java、Maven、SpringBoot数据分布式采集:Flume、Sqoop、kettle数据分布式存储:HadoopHDFS离线批处理计算:MapReduce、Spark、Flink实时流式计算:Storm/SparkStreaming、Flink批处理消息队列:Kafka查询分析:Hbase、Hive、ClickHouse、Presto搜索引擎:Elast
- 基于Hadoop平台的电信客服数据的处理与分析④项目实现:任务16:数据采集/消费/存储
我非夏日
大数据开发---电信项目大数据大数据技术开发hadoop
任务描述“数据生产”的程序启动后,会持续向callLog.csv文件中写入模拟的通话记录。接下来,我们需要将这些实时的数据通过Flume采集到Kafka集群中,然后提供给HBase消费。Flume:是Cloudera提供的一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统,Flume支持在日志系统中定制各类数据发送方,用于收集数据;同时,Flume提供对数据进行简单处理,并写到各种数据
- flume集成kafka
weixin_34112181
大数据pythonjava
2019独角兽企业重金招聘Python工程师标准>>>1.kafka的配置参照https://my.oschina.net/u/1591525/blog/22519102.flum配置在flume的conf目录下新建kafka.propertiesagent.sources=s1agent.channels=c1agent.sinks=k1agent.sources.s1.type=execage
- Hadoop生态圈
陈超Terry的技术屋
生态圈1.HBase的数据存储在HDFS里2.MapReduce可以计算HBase里的数据,也可以计算HDFS里的数据3.Hive是数据分析数据引擎,也是MapReduce模型,支持SQL4.Pig也是一个数据分析引擎,不支持SQL,有自己的PigLatin数据5.Sqoop是数据采集工具,针对关系数据库6.Flume是针对文件等数据的采集7.Hadoop的HA通过Zookeeper来实现8.HU
- Flume总结
我是嘻哈大哥
1.概述2.角色(source、Channel、sink、event)3.使用(1)监控端口(2)实时读取本地文件到HDFS(3)实时读取目录文件到HDFS(4)Flume与Flume之间数据传递:单Flume多Channel、Sink(5)Flume与Flume之间数据传递,多Flume汇总数据到单Flume
- 离线数仓(一)【数仓概念、需求架构】
让线程再跑一会
离线数仓大数据
前言今天开始学习数仓的内容,之前花费一年半的时间已经学完了Hadoop、Hive、Zookeeper、Spark、HBase、Flume、Sqoop、Kafka、Flink等基础组件。把学过的内容用到实践这是最重要的,相信会有很大的收获。1、数据仓库概念1.1、概念数据仓库(DataWarehouse),是为企业制定决策,提供数据支持的。可以帮助企业,改进业务流程、提高产品质量等。(数据仓库的目的
- 大数据技术之 Flume
骚戴
大数据大数据Flume
第1章Flume概述1.1Flume定义Flume是Cloudera提供的一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统。Flume基于流式架构,灵活简单。骚戴理解:注意这里是日志采集,也就是只能采集文本类型的数据!Flume的作用的特点就是可以实时采集!1.2Flume基础架构Flume组成架构如下图所示1.2.1AgentAgent是一个JVM进程,它以事件的形式将数据从源头送
- FLUME-NG 使用总结
.道不虚行
hadoopflume大数据数据收集
FLUME-NG使用总结1、Flume-NG概述2、Flume-NG架构设计要点3、FlowPipeline4、FlumeNG三个组件概要4.1、FlumeSource4.2、FlumeChannel4.3、FlumeSink5、入门应用5.1、flume-ng通过网络端口采集数据5.2、flume-ng通过Exectail采集数据5.3、可能遇到的问题1、Flume-NG概述Flume-NG是一
- 【大数据】Flume-1.9.0安装➕入门案例
欧叶冲冲冲
flume大数据flume学习分布式
目录前言一、Flume概述Flume基础架构二、Flume-1.9.0安装➕入门案例1.下载1.9.0解压2.监控端口数据官方案例3.实时读取本地文件(hive.log)到HDFS案例4.实时读取目录文件到HDFS案例5.实时监控目录下多个追加文件总结前言大数据解决的无非是海量数据的采集、存储、计算,Flume是Cloudera提供的一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统。
- 大数据入门--Flume(一)安装教程与案例
许中宝
大数据flume大数据
Flume(一)安装教程与案例安装教程案例监控端口数据官方案例(netcat-logger)实时监控单个追加文件(exec-hdfs)进阶版存在的问题实时监控目录下多个新文件(taildir)实时监控目录下多个新文件(spooldir-hdfs)安装教程下载安装apache-flume-1.9.0-bin.tar.gz解压配置JAVA_HOMEviconf/flume-env.sh.templat
- 大数据Flume--入门
泛黄的咖啡店
大数据flume
文章目录FlumeFlume定义Flume基础架构AgentSourceSinkChannelEventFlume安装部署安装地址安装部署Flume入门案例监控端口数据官方案例实时监控单个追加文件实时监控目录下多个新文件实时监控目录下的多个追加文件FlumeFlume定义Flume是Cloudera提供的一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统。Flume基于流式架构,灵活简
- Flume安装部署
在下区区俗物
flume大数据
安装部署安装包连接:链接:https://pan.baidu.com/s/1m0d5O3Q2eH14BpWsGGfbLw?pwd=6666(1)将apache-flume-1.10.1-bin.tar.gz上传到linux的/opt/software目录下(2)解压apache-flume-1.10.1-bin.tar.gz到/opt/moudle/目录下tar-zxf/opt/software/
- 大数据相关技术
ssttIsme
1数据获取方式爬虫:分布式爬虫java的jsoup(操作方式基于选择器),pythoon,八爪鱼日志收集:log4j(可以控制级别和放置的位置)(可以输出数据到flume)(可以输出到mq),flume(分布式日志收集系统)(收集用户ip,访问了哪个方法)(例如三大运营商的日志分析能根据用户71个字段,拿到谁在什么时间什么地点用什么手机什么浏览器哪个版本访问了什么网站访问了多长时间网站内容是什么)
- java大数据hadoop2.9.2 Flume安装&操作
crud-boy
java大数据大数据flume
1、flume安装(1)解压缩tar-xzvfapache-flume-1.9.0-bin.tar.gzrm-rfapache-flume-1.9.0-bin.tar.gzmv./apache-flume-1.9.0-bin//usr/local/flume(2)配置cd/usr/local/flume/confcp./flume-env.sh.template./flume-env.shvifl
- java基础:System.getenv() VS System.getProperty()
CarsonCao
在阅读flume源码的时候发下如下函数:privatestaticvoidinitSysPropFromEnvVar(StringsysPropName,StringenvVarName,Stringdescription){if(System.getProperty(sysPropName)!=null){LOGGER.debug("GlobalSSL"+description+"hasbeen
- flume:(conf-file-poller-0) [ERROR - org.apache.flume.node.AbstractConfigurationProvider.loadSinks
WSQ(E)
flume
flume启动失败(conf-file-poller-0)[ERROR-org.apache.flume.node.AbstractConfigurationProvider.loadSinks(AbstractConfigurationProvider.java:427)]Sinkk1hasbeenremovedduetoanerrorduringconfigurationorg.apache.
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟