OpenVINO™ 工具套件可以加快深度学习视觉应用开发速度,帮助用户在从边缘到云的各种英特尔平台上,更加方便快捷的将 AI 模型部署到生产系统中。OpenVINO™ 2023.1 LTS 版本现已发布,可帮助你快速轻松地开发卓越的人工智能应用,并跨边缘和云端部署深度学习推理工作负载,无论你处于人工智能编程的什么阶段。
C# 是由 C 和 C++ 衍生出来的一种安全的、稳定的、简单的、优雅的面向对象编程语言,它综合了 VB 简单的可视化操作和 C++ 的高运行效率,成为支持成为.NET 开发的首选语言。作为人工智能开发人员,如果你希望在 C# 端使用 OpenVINO™ ,OpenVINO C# API将是你的首选,并且制作了 NuGet 程序包,实现在 C# 端了一站式安装与使用 OpenVINO™ 。
项目的首发网址:OpenVINO™ C# API 详解与演示 | 开发者实战。
OpenVINO C# API在制作时参考了OpenVINO™ C++ API,因此对于之前使用过OpenVINO™ 的人十分友好。下面表格向我们展示了 C# 与 C++ API的对应关系
Class | C++ API | C# API | 说明 |
---|---|---|---|
Core class | ov::Core | Core | OpenVINO运行时核心实体类 |
Model class | ov::Model | Model | 用户自定义模型类 |
CompiledModel class | ov::CompiledModel | CompiledModel | 已编译的模型类 |
Output class | ov:: Output |
Output | 节点输出的句柄类 |
Input class | ov:: Input |
Input | 节点输入的句柄类 |
InferRequest class | ov::InferRequest | ov::InferRequest | 以异步或同步方式运行推断请求的类 |
Tensor class | ov::Tensor | Tensor | 张量 |
Shape class | ov::Shape | Shape | 张量的形状类 |
在本文中,将会根据模型部署的一般步骤,演示从模型加载到推理的方法函数使用方式,并于C++ API 做对比。
OpenVINO C# API 支持 NuGet 程序包安装方式,这与在C++中安装过程相比,较为简单,并且程序包中包含了最新版的 OpenVINO™ 2023.1 发行版本的 Release,可以通 过 NuGet 安装后直接使用。
如果使用Visual Studio 编译该项目,则可以通过 NuGet 程序包管理功能直接安装即可:
如果通过dotnet命令方式安装,通过下面语句进行安装即可:
dotnet add package OpenVINO.CSharp.win
OpenVINO C# API 程序集全部在CSharp命名空间下,因此若要使用 OpenVINO C# API,需要先引入命名空间:
using OpenVinoSharp;
Core类代表一个OpenVINO运行时核心实体,后续的读取模型、加载模型等方法都需要通过 Core 类进行创建,在封装C# API 时,为了与 C++ API 对应,也对 Core 类进行了封装,并封装了与 C++ API 中对应的方法
在C#中的初始化方式:
Core core = new Core();
在C++中的初始化方式:
ov::Core core;
OpenVINO™ 2022.1版本更新之后,加载,下面是所使用的 API 方法:
API | 作用 |
---|---|
Core.read_model () | 将模型从硬盘载入内存,并返回Model对象。 |
在C#中加载模型的方式:
Model model = core.read_model(model_path);
在C++中的初始化方式:
std::shared_ptr model = core.read_model(model_path);
通过 Core.read_model ()方法获得的 Model 对象和通过 Core.compile_model ()方法获得的 CompiledModel 对象,都支持直接访问属性获取输入与输出层信息。以Model对象获取模型信息为例,下面是所使用的 API 方法:
API | 作用 |
---|---|
Model.get_friendly_name() | 获取模型的friendly name。 |
Model.input() | 获取模型的输入层,并返回 Input对象。 |
Model.output() | 获取模型的输出层,并返回 Output对象。 |
Input/Output 主要是封装了模型网络层,可以通过下面 API 实现获取模型的详细信息:
API | 作用 |
---|---|
Output.get_any_name() | 获取模型网络层的名字。 |
Output.get_element_type() | 获取模型网络层的数据类型,并返回 OvType对象,OvType主要封装了网络的基本数据类型。 |
Output.get_shape() | 获取模型网络层的形状,并返回 Shape对象,Shape封装了网络层的形状数组。 |
在 C# 中通过下方代码,可以直接获取模型的输入、输入层以及模型的friendly name:
string model_name = model.get_friendly_name();
Input input = model.input();
Output output = model.output();
然后将模型具体信息打印到控制台页面:
Console.WriteLine("Model name: {0}", model_name);
Console.WriteLine("/------- [In] -------/");
Console.WriteLine("Input name: {0}", input.get_any_name());
Console.WriteLine("Input type: {0}", input.get_element_type().to_string());
Console.WriteLine("Input shape: {0}", input.get_shape().to_string());
Console.WriteLine("/------- [Out] -------/");
Console.WriteLine("Output name: {0}", output.get_any_name());
Console.WriteLine("Output type: {0}", output.get_element_type().to_string());
Console.WriteLine("Output shape: {0}", output.get_shape().to_string());
获取模型网络层信息如下:
Model name: torch_jit
/------- [In] -------/
Input name: data
Input type: float
Input shape: [1,3,224,224]
/------- [Out] -------/
Output name: prob
Output type: float
Output shape: [1,1000]
同样的输出信息,我们使用 C++ API 实现如下:
std::cout << "Model name: " << model->get_friendly_name() << std::endl;
ov::Output input = model->input();
std::cout << "/------- [In] -------/" << std::endl;
std::cout << "Input name: " << input.get_any_name() << std::endl;
std::cout << "Input type: " << input.get_element_type().c_type_string() << std::endl;
std::cout << "Input shape: " << input.get_shape().to_string() << std::endl;
ov::Output output = model->output();
std::cout << "/------- [Out] -------/" << std::endl;
std::cout << "Output name: " << output.get_any_name() << std::endl;
std::cout << "Output type: " << output.get_element_type().c_type_string() << std::endl;
std::cout << "Output shape: " << output.get_shape().to_string() << std::endl;
在读取本地模型后,调用模型编译方法将模型编译为可以在目标设备上执行的 compile_model 对象,并通过该对象创建用于推断已编译模型的推断请求对象。下面是所使用的 API 方法:
API | 作用 |
---|---|
Core.compile_model() | 将模型编译为可以在目标设备上执行的 compile_model 对象。 |
CompiledModel.create_infer_request() | 创建用于推断已编译模型的推断请求对象,创建的请求已经分配了输入和输出张量。 |
在 C# 中编译模型并创建推理请求的方式:
CompiledModel compiled_model = core.compile_model(model, "AUTO");
InferRequest infer_request = compiled_model.create_infer_request();
使用C++ API中编译模型并创建推理请求的方式:
CompiledModel compiled_model = core.compile_model(model, "AUTO");
InferRequest infer_request = compiled_model.create_infer_request();
在创建推理请求后,系统会自动创建和分配输入和输出的张量,张量可以通过InferRequest 对象获得,并且可以自定义张量并加载到模型指定节点;可以根据张量的输入输出序号、名称以及模型节点Node对象获取和设置,主要C# API 如下:
API | 作用 |
---|---|
InferRequest.set_tensor() | 设置要推断的输入/输出张量。 |
InferRequest.set_input_tensor() | 设置要推断的输入张量。 |
InferRequest.set_output_tensor() | 设置要推断的输出张量 |
InferRequest.get_tensor() | 获取用于推理的输入/输出张量。 |
InferRequest.get_input_tensor() | 获取用于推理的输入张量。 |
InferRequest.get_output_tensor() | 获取用于推理的输出张量。 |
张量中主要包含的信息有张量的形状(Shape)、张量的数据格式(OvType-> element.Type)以及张量中的内存数据。可以通过以下API方法操作张量的参数:
API | 作用 |
---|---|
Tensor.set_shape () | 给张量设置一个新的形状。 |
Tensor.get_shape() | 获取张量的形状。 |
Tensor.get_element_type() | 获取张量的数据类型。 |
Tensor.get_size() | 获取张量的数据长度。 |
Tensor.get_byte_size() | 获取张量的字节大小。 |
Tensor.data() | 获取张量的内存地址。 |
Tensor.set_data() | 将指定类型的数据加载到张量内存下。 |
Tensor.get_data() | 从张量中读取指定类型的数据。 |
以上方法是对张量的一些基础操作,除了set_data、get_data是OpenVINO C# API独有的,其他接口都与C++API一致。
对于单输入的模型可以直接通过get_input_tensor()方法获得,并调用Tensor的相关方法获取Tensor的相关信息,C# 代码如下所示:
Tensor input_tensor = infer_request.get_input_tensor();
Console.WriteLine("/------- [Input tensor] -------/");
Console.WriteLine("Input tensor type: {0}", input_tensor.get_element_type().to_string());
Console.WriteLine("Input tensor shape: {0}", input_tensor.get_shape().to_string());
Console.WriteLine("Input tensor size: {0}", input_tensor.get_size());
获取输出结果为:
/------- [Input tensor] -------/
Input tensor type: f32
Input tensor shape: Shape : {1, 3, 224, 224}
Input tensor size: 150528
对于上述的同样输出内容,我们也可以通过C++ API 实现,C++ 代码如下:
ov::Tensor input_tensor = infer_request.get_input_tensor();
std::cout << "/------- [Input tensor] -------/" << std::endl;
std::cout << "Input tensor type: " << input_tensor.get_element_type().c_type_string() << std::endl;
std::cout << "Input tensor shape: " << input_tensor.get_shape().to_string() << std::endl;
std::cout << "Input tensor size: " << input_tensor.get_size() << std::endl;
这一步主要是将处理好的图片数据加载到Tensor数据内存中,OpenVINO的API中提供了访问内存地址的接口,可以获取数据内存首地址,不过为了更好的加载推理数据,我们此处封装了set_data()方法,可以实现将处理后的图片数据加载到数据内存上。在C#中的代码为:
Mat input_mat = new Mat();
Shape input_shape = input_tensor.get_shape();
long channels = input_shape[1];
long height = input_shape[2];
long width = input_shape[3];
float[] input_data = new float[channels * height * width];
Marshal.Copy(input_mat.Ptr(0), input_data, 0, input_data.Length);
input_tensor.set_data(input_data);
下面是在C++中实现上述功能的代码:
cv::Mat input_mat;
float* input_data = input_tensor.data();
ov::Shape input_shape = input_tensor.get_shape();
size_t channels = input_shape[1];
size_t height = input_shape[2];
size_t width = input_shape[3];
for (size_t c = 0; c < channels; ++c) {
for (size_t h = 0; h < height; ++h) {
for (size_t w = 0; w < width; ++w) {
input_data[c * height * width + h * width + w] = input_mat.at>(h, w)[c];
}
}
}
在加载完推理数据后,就可以调用模型推理的API方法推理当前数据,主要使用到的API方法为:
API | 作用 |
---|---|
InferRequest.infer() | 在同步模式下推断指定的输入。 |
调用该方法也较为简单,只需要调用该API接口即可,在C#中的代码为:
infer_request.infer();
C++中的代码与C++中一致。
对于单输出的模型可以直接通过get_output_tensor()方法获得,并调用Tensor的相关方法获取Tensor的相关信息,C# 代码如下所示:
Tensor output_tensor = infer_request.get_output_tensor();
Console.WriteLine("/------- [Output tensor] -------/");
Console.WriteLine("Output tensor type: {0}", output_tensor.get_element_type().to_string());
Console.WriteLine("Output tensor shape: {0}", output_tensor.get_shape().to_string());
Console.WriteLine("Output tensor size: {0}", output_tensor.get_size());
获取输出output_tensor信息为:
/------- [Output tensor] -------/
Output tensor type: f32
Output tensor shape: Shape : {1, 1000}
Output tensor size: 1000
对于输出Tensor,我们只需要读取输出内存上的数据即可,此处我们封装了get_data()方法,可以直接获取输出内存上的数据,在C#中的代码为:
float[] result = output_tensor.get_data(1000);
同样获取推理结果,在C++中的代码为:
const float* output_data = output_tensor.data();
float result[1000];
for (int i = 0; i < 1000; ++i) {
result[i] = *output_data;
output_data++;
}
在获取结果后,后续的处理需要根据模型的输出类型做相应的处理。
由于C#在封装时采用的C API 接口实现的,因此在C#中会产生较多的 非托管内存,若该对象出现循环重复创建,会导致过多的内存未释放导致内存泄漏,因此对于临时创建的对象在使用后要即使销毁,销毁方式也较为简单,只需要调用对象的dispose()方法即可。
output_tensor.dispose();
input_shape.dispose();
infer_request.dispose();
compiled_model.dispose();
input.dispose();
output.dispose();
model.dispose();
core.dispose();
下面代码展示了Yolov8分类模型使用OpenVINO C# API API方法部署模型的完整代码:
using OpenCvSharp;
using OpenCvSharp.Dnn;
using OpenVinoSharp;
using System.Data;
using System.Runtime.InteropServices;
namespace test_openvino_csharp_api
{
internal class Program
{
static void Main(string[] args)
{
string model_path = "E:\\GitSpace\\ OpenVINO-CSharp-API \\model\\yolov8\\yolov8s-cls.xml";
Core core = new Core(); // 初始化推理核心
Model model = core.read_model(model_path); // 读取本地模型
CompiledModel compiled_model = core.compile_model(model, "AUTO"); // 便哟模型到指定设备
// 获取模型的输入输出信息
Console.WriteLine("Model name: {0}", model.get_friendly_name());
Input input = compiled_model.input();
Console.WriteLine("/------- [In] -------/");
Console.WriteLine("Input name: {0}", input.get_any_name());
Console.WriteLine("Input type: {0}", input.get_element_type().to_string());
Console.WriteLine("Input shape: {0}", input.get_shape().to_string());
Output output = compiled_model.output();
Console.WriteLine("/------- [Out] -------/");
Console.WriteLine("Output name: {0}", output.get_any_name());
Console.WriteLine("Output type: {0}", output.get_element_type().to_string());
Console.WriteLine("Output shape: {0}", output.get_shape().to_string());
// 创建推理请求
InferRequest infer_request = compiled_model.create_infer_request();
// 获取输入张量
Tensor input_tensor = infer_request.get_input_tensor();
Console.WriteLine("/------- [Input tensor] -------/");
Console.WriteLine("Input tensor type: {0}", input_tensor.get_element_type().to_string());
Console.WriteLine("Input tensor shape: {0}", input_tensor.get_shape().to_string());
Console.WriteLine("Input tensor size: {0}", input_tensor.get_size());
// 读取并处理输入数据
Mat image = Cv2.ImRead(@"E:\GitSpace\ OpenVINO-CSharp-API \dataset\image\demo_7.jpg");
Mat input_mat = new Mat();
input_mat = CvDnn.BlobFromImage(image, 1.0 / 255.0, new Size(224, 224), 0, true, false);
// 加载推理数据
Shape input_shape = input_tensor.get_shape();
long channels = input_shape[1];
long height = input_shape[2];
long width = input_shape[3];
float[] input_data = new float[channels * height * width];
Marshal.Copy(input_mat.Ptr(0), input_data, 0, input_data.Length);
input_tensor.set_data(input_data);
// 模型推理
infer_request.infer();
// 获取输出张量
Tensor output_tensor = infer_request.get_output_tensor();
Console.WriteLine("/------- [Output tensor] -------/");
Console.WriteLine("Output tensor type: {0}", output_tensor.get_element_type().to_string());
Console.WriteLine("Output tensor shape: {0}", output_tensor.get_shape().to_string());
Console.WriteLine("Output tensor size: {0}", output_tensor.get_size());
// 获取输出数据
float[] result = output_tensor.get_data(1000);
List new_list = new List { };
for (int i = 0; i < result.Length; i++)
{
new_list.Add(new float[] { (float)result[i], i });
}
new_list.Sort((a, b) => b[0].CompareTo(a[0]));
KeyValuePair[] cls = new KeyValuePair[10];
for (int i = 0; i < 10; ++i)
{
cls[i] = new KeyValuePair((int)new_list[i][1], new_list[i][0]);
}
Console.WriteLine("\n Classification Top 10 result : \n");
Console.WriteLine("classid probability");
Console.WriteLine("------- -----------");
for (int i = 0; i < 10; ++i)
{
Console.WriteLine("{0} {1}", cls[i].Key.ToString("0"), cls[i].Value.ToString("0.000000"));
}
// 销毁非托管内存
output_tensor.dispose();
input_shape.dispose();
infer_request.dispose();
compiled_model.dispose();
input.dispose();
output.dispose();
model.dispose();
core.dispose();
}
}
}
在本文中我们基于模型推理流程,演示了OpenVINO C# API使用方法,并和OpenVINO C++API进行了对比,展示了OpenVINO C# API与C++API在使用的区别,这也对使用过C++ API的开发者十分友好,上手会十分容易。
在本文中我们只展示了基础的模型推理流程代码,也对各个API进行了测试,针对其他比较高级的API方法,我们后续会继续进行测试其他API方法,向各位开发者展示其用法。
总的来说,目前OpenVINO C# API已经完全支持在Windows环境下的安装使用,欢迎各位开发者安装使用,如有相关问题或优化方法,也欢迎大家提出意见与指导。