目录
1--Pytorch-FX量化
2--校准模型
3--代码实例
3-1--主函数
3-2--prepare_dataloader函数
3-3--训练和测试函数
Pytorch在torch.quantization.quantize_fx中提供了两个API,即prepare_fx和convert_fx。
prepare_fx的作用是准备量化,其在输入模型里按照设定的规则qconfig_dict来插入观察节点,进行的工作包括:
1. 将nn.Module转换为GraphModule。
2. 合并算子,例如将Conv、BN和Relu算子进行合并(通过打印模型可以查看合并的算子)。
3. 在Conv和Linear等OP前后插入Observer, 用于观测激活值Feature map的特征(权重的最大最小值),计算scale和zero_point。
convert_fx的作用是根据scale和zero_point来将模型进行量化。
完整项目代码参考:ljf69/Model-Deployment-Notes
在对原始模型model调用prepare_fx()后得到prepare_model,一般需要对模型进行校准,校准后再调用convert_fx()进行模型的量化。
import os
import copy
import torch
import torch.nn as nn
from torchvision.models.resnet import resnet18
from torch.quantization import get_default_qconfig
from torch.quantization.quantize_fx import prepare_fx, convert_fx
from torch.ao.quantization.fx.graph_module import ObservedGraphModule
from dataloader import prepare_dataloader
from train_val import train_model, evaluate_model
# 量化模型
def quant_fx(model):
# 使用Pytorch中的FX模式对模型进行量化
model.eval()
qconfig = get_default_qconfig("fbgemm") # 默认是静态量化
qconfig_dict = {
"": qconfig,
}
model_to_quantize = copy.deepcopy(model)
# 通过调用prepare_fx和convert_fx直接量化模型
prepared_model = prepare_fx(model_to_quantize, qconfig_dict)
# print("prepared model: ", prepared_model) # 打印模型
quantized_model = convert_fx(prepared_model)
# print("quantized model: ", quantized_model) # 打印模型
# 保存量化后的模型
torch.save(quantized_model.state_dict(), "r18_quant.pth")
# 校准函数
def calib_quant_model(model, calib_dataloader):
# 判断model一定是ObservedGraphModule,即一定是量化模型,而不是原始模型nn.module
assert isinstance(
model, ObservedGraphModule
), "model must be a perpared fx ObservedGraphModule."
model.eval()
with torch.inference_mode():
for inputs, labels in calib_dataloader:
model(inputs)
print("calib done.")
# 比较校准前后的差异
def quant_calib_and_eval(model, test_loader):
model.to(torch.device("cpu"))
model.eval()
qconfig = get_default_qconfig("fbgemm")
qconfig_dict = {
"": qconfig,
}
# 原始模型(未量化前的结果)
print("model:")
evaluate_model(model, test_loader)
# 量化模型(未经过校准的结果)
model2 = copy.deepcopy(model)
model_prepared = prepare_fx(model2, qconfig_dict)
model_int8 = convert_fx(model_prepared)
print("Not calibration model_int8:")
evaluate_model(model_int8, test_loader)
# 通过原始模型转换为量化模型
model3 = copy.deepcopy(model)
model_prepared = prepare_fx(model3, qconfig_dict) # 将模型准备为量化模型,即插入观察节点
calib_quant_model(model_prepared, test_loader) # 使用数据对模型进行校准
model_int8 = convert_fx(model_prepared) # 调用convert_fx将模型设置为量化模型
torch.save(model_int8.state_dict(), "r18_quant_calib.pth") # 保存校准后的模型
# 量化模型(已经过校准的结果)
print("Do calibration model_int8:")
evaluate_model(model_int8, test_loader)
if __name__ == "__main__":
# 准备训练数据和测试数据
train_loader, test_loader = prepare_dataloader()
# 定义模型
model = resnet18(pretrained=True)
model.fc = nn.Linear(512, 10)
# 训练模型(如果事先没有训练)
if os.path.exists("r18_row.pth"): # 之前训练过就直接加载权重
model.load_state_dict(torch.load("r18_row.pth", map_location="cpu"))
else:
train_model(model, train_loader, test_loader, torch.device("cuda"))
print("train finished.")
torch.save(model.state_dict(), "r18_row.pth")
# 量化模型
quant_fx(model)
# 对比是否进行校准的影响
quant_calib_and_eval(model, test_loader)
# 准备训练数据和测试数据
def prepare_dataloader(num_workers=8, train_batch_size=128, eval_batch_size=256):
train_transform = transforms.Compose(
[
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
]
)
test_transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
]
)
train_set = torchvision.datasets.CIFAR10(
root="data", train=True, download=True, transform=train_transform
)
test_set = torchvision.datasets.CIFAR10(
root="data", train=False, download=True, transform=test_transform
)
train_sampler = torch.utils.data.RandomSampler(train_set)
test_sampler = torch.utils.data.SequentialSampler(test_set)
train_loader = torch.utils.data.DataLoader(
dataset=train_set,
batch_size=train_batch_size,
sampler=train_sampler,
num_workers=num_workers,
)
test_loader = torch.utils.data.DataLoader(
dataset=test_set,
batch_size=eval_batch_size,
sampler=test_sampler,
num_workers=num_workers,
)
return train_loader, test_loader
# 训练模型,用于后面的量化
def train_model(model, train_loader, test_loader, device):
learning_rate = 1e-2
num_epochs = 20
criterion = nn.CrossEntropyLoss()
model.to(device)
optimizer = optim.SGD(
model.parameters(), lr=learning_rate, momentum=0.9, weight_decay=1e-5
)
for epoch in range(num_epochs):
# Training
model.train()
running_loss = 0
running_corrects = 0
for inputs, labels in train_loader:
inputs = inputs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
train_loss = running_loss / len(train_loader.dataset)
train_accuracy = running_corrects / len(train_loader.dataset)
# Evaluation
model.eval()
eval_loss, eval_accuracy = evaluate_model(
model=model, test_loader=test_loader, device=device, criterion=criterion
)
print("Epoch: {:02d} Train Loss: {:.3f} Train Acc: {:.3f} Eval Loss: {:.3f} Eval Acc: {:.3f}".format(
epoch, train_loss, train_accuracy, eval_loss, eval_accuracy))
return model
def evaluate_model(model, test_loader, device=torch.device("cpu"), criterion=None):
t0 = time.time()
model.eval()
model.to(device)
running_loss = 0
running_corrects = 0
for inputs, labels in test_loader:
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
if criterion is not None:
loss = criterion(outputs, labels).item()
else:
loss = 0
# statistics
running_loss += loss * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
eval_loss = running_loss / len(test_loader.dataset)
eval_accuracy = running_corrects / len(test_loader.dataset)
t1 = time.time()
print(f"eval loss: {eval_loss}, eval acc: {eval_accuracy}, cost: {t1 - t0}")
return eval_loss, eval_accuracy