【elasticsearch】15、query&filtering与多字符串多字段查询

query context & filter context

image.png
  • 高级搜索的功能:支持多想文本输入,针对多个字段进行搜索
  • 搜索引擎一般也提供基于时间,价格等条件的guolv
  • elasticsearch中,有query和filter两种不同的context
    • query contest:相关性算分
    • filter context:不需要算分,可以利用cache获得更好的性能

条件组合

  • 假设要搜索一本电影,包含了以下一些条件
    • 评论中包含了guitar,用户打分高于3分,同时上映日期要在1993到2000年之间
  • 这个搜索其实包含了3段逻辑,针对不同的字段
    • 评论字段中要包含guitar/用户评分大于3/上映日期需要在给定的范围
  • 同时包含这三个逻辑,并且有比较好的性能?
    • 符合查询:bool query

bool 查询

  • 一个bool查询,是一个或者多个查询子句的组合
    • 总共包括4种子句,其中2种会影响算分,2种不影响算分
  • 相关性并不只是全文本检索的专利,也适用于yes | no的子句,匹配的子句越多,相关性评分越高。如果多条查询子句被合并为一条符合查询语句,比如bool查询,则每个查询子句计算得出的评分会被合并到总的相关性评分中
英文 描述
must 必须匹配,贡献算分
should 选择性匹配,贡献算分
must_not filter context,查询子句,必须不能匹配
filter filter context,必须匹配,但是不贡献算分

bool查询语法

  • 子查询可以以任意顺序出席那
  • 可以嵌套多个查询
  • 如果你的bool查询中 ,没有must条件,should中必须至少满足一条查询
image.png

如何解决结构化查询-“包含而不是相等”的问题

  • 解决方案:增加一个genre count字段进行计数


    image.png

    image.png
  • 从业务角度,按需修改elasticsearch的数据模型


    image.png

filter context - 不影响算分

image.png

bool嵌套

  • 实现了should not的逻辑


    image.png

查询语句的结构,会对相关度算分产生影响

  • 同一层级下的竞争字段,具有相同的权重
  • 通过嵌套bool查询,可以改变对算分的影响


    image.png

控制字段的boosting

  • boosting是控制相关度的一种手段
    • 索引,字段或者查询子条件
  • 参数boost的含义
    • 当boost>1时候,打分的相关度相对性提升
    • 当0
    • 当boost<0时候,贡献负分


      image.png

not quite not

  • 要求苹果公司的产品信息优先


    image.png

回顾

  • query context vs filter context
  • bool query - 更多的条件组合
  • 查询结构与相关性算分
  • 如何控制查询的精确度
    • boosting & boosting query

示例

POST /products/_bulk
{ "index": { "_id": 1 }}
{ "price" : 10,"avaliable":true,"date":"2018-01-01", "productID" : "XHDK-A-1293-#fJ3" }
{ "index": { "_id": 2 }}
{ "price" : 20,"avaliable":true,"date":"2019-01-01", "productID" : "KDKE-B-9947-#kL5" }
{ "index": { "_id": 3 }}
{ "price" : 30,"avaliable":true, "productID" : "JODL-X-1937-#pV7" }
{ "index": { "_id": 4 }}
{ "price" : 30,"avaliable":false, "productID" : "QQPX-R-3956-#aD8" }



#基本语法
POST /products/_search
{
  "query": {
    "bool" : {
      "must" : {
        "term" : { "price" : "30" }
      },
      "filter": {
        "term" : { "avaliable" : "true" }
      },
      "must_not" : {
        "range" : {
          "price" : { "lte" : 10 }
        }
      },
      "should" : [
        { "term" : { "productID.keyword" : "JODL-X-1937-#pV7" } },
        { "term" : { "productID.keyword" : "XHDK-A-1293-#fJ3" } }
      ],
      "minimum_should_match" :1
    }
  }
}

#改变数据模型,增加字段。解决数组包含而不是精确匹配的问题
POST /newmovies/_bulk
{ "index": { "_id": 1 }}
{ "title" : "Father of the Bridge Part II","year":1995, "genre":"Comedy","genre_count":1 }
{ "index": { "_id": 2 }}
{ "title" : "Dave","year":1993,"genre":["Comedy","Romance"],"genre_count":2 }

#must,有算分
POST /newmovies/_search
{
  "query": {
    "bool": {
      "must": [
        {"term": {"genre.keyword": {"value": "Comedy"}}},
        {"term": {"genre_count": {"value": 1}}}

      ]
    }
  }
}

#Filter。不参与算分,结果的score是0
POST /newmovies/_search
{
  "query": {
    "bool": {
      "filter": [
        {"term": {"genre.keyword": {"value": "Comedy"}}},
        {"term": {"genre_count": {"value": 1}}}
        ]

    }
  }
}


#Filtering Context
POST _search
{
  "query": {
    "bool" : {

      "filter": {
        "term" : { "avaliable" : "true" }
      },
      "must_not" : {
        "range" : {
          "price" : { "lte" : 10 }
        }
      }
    }
  }
}


#Query Context
POST /products/_bulk
{ "index": { "_id": 1 }}
{ "price" : 10,"avaliable":true,"date":"2018-01-01", "productID" : "XHDK-A-1293-#fJ3" }
{ "index": { "_id": 2 }}
{ "price" : 20,"avaliable":true,"date":"2019-01-01", "productID" : "KDKE-B-9947-#kL5" }
{ "index": { "_id": 3 }}
{ "price" : 30,"avaliable":true, "productID" : "JODL-X-1937-#pV7" }
{ "index": { "_id": 4 }}
{ "price" : 30,"avaliable":false, "productID" : "QQPX-R-3956-#aD8" }


POST /products/_search
{
  "query": {
    "bool": {
      "should": [
        {
          "term": {
            "productID.keyword": {
              "value": "JODL-X-1937-#pV7"}}
        },
        {"term": {"avaliable": {"value": true}}
        }
      ]
    }
  }
}


#嵌套,实现了 should not 逻辑
POST /products/_search
{
  "query": {
    "bool": {
      "must": {
        "term": {
          "price": "30"
        }
      },
      "should": [
        {
          "bool": {
            "must_not": {
              "term": {
                "avaliable": "false"
              }
            }
          }
        }
      ],
      "minimum_should_match": 1
    }
  }
}


#Controll the Precision
POST _search
{
  "query": {
    "bool" : {
      "must" : {
        "term" : { "price" : "30" }
      },
      "filter": {
        "term" : { "avaliable" : "true" }
      },
      "must_not" : {
        "range" : {
          "price" : { "lte" : 10 }
        }
      },
      "should" : [
        { "term" : { "productID.keyword" : "JODL-X-1937-#pV7" } },
        { "term" : { "productID.keyword" : "XHDK-A-1293-#fJ3" } }
      ],
      "minimum_should_match" :2
    }
  }
}



POST /animals/_search
{
  "query": {
    "bool": {
      "should": [
        { "term": { "text": "brown" }},
        { "term": { "text": "red" }},
        { "term": { "text": "quick"   }},
        { "term": { "text": "dog"   }}
      ]
    }
  }
}

POST /animals/_search
{
  "query": {
    "bool": {
      "should": [
        { "term": { "text": "quick" }},
        { "term": { "text": "dog"   }},
        {
          "bool":{
            "should":[
               { "term": { "text": "brown" }},
                 { "term": { "text": "brown" }},
            ]
          }

        }
      ]
    }
  }
}


DELETE blogs
POST /blogs/_bulk
{ "index": { "_id": 1 }}
{"title":"Apple iPad", "content":"Apple iPad,Apple iPad" }
{ "index": { "_id": 2 }}
{"title":"Apple iPad,Apple iPad", "content":"Apple iPad" }


POST blogs/_search
{
  "query": {
    "bool": {
      "should": [
        {"match": {
          "title": {
            "query": "apple,ipad",
            "boost": 1.1
          }
        }},

        {"match": {
          "content": {
            "query": "apple,ipad",
            "boost":
          }
        }}
      ]
    }
  }
}

DELETE news
POST /news/_bulk
{ "index": { "_id": 1 }}
{ "content":"Apple Mac" }
{ "index": { "_id": 2 }}
{ "content":"Apple iPad" }
{ "index": { "_id": 3 }}
{ "content":"Apple employee like Apple Pie and Apple Juice" }


POST news/_search
{
  "query": {
    "bool": {
      "must": {
        "match":{"content":"apple"}
      }
    }
  }
}

POST news/_search
{
  "query": {
    "bool": {
      "must": {
        "match":{"content":"apple"}
      },
      "must_not": {
        "match":{"content":"pie"}
      }
    }
  }
}

POST news/_search
{
  "query": {
    "boosting": {
      "positive": {
        "match": {
          "content": "apple"
        }
      },
      "negative": {
        "match": {
          "content": "pie"
        }
      },
      "negative_boost": 0.5
    }
  }
}

你可能感兴趣的:(【elasticsearch】15、query&filtering与多字符串多字段查询)