Dynamic Metasurface Array 用于近场重新总结

Main Point

加密和交织可以混合在一起吗?

\subsection{System Model}
Single User, One DMA as a transmitter. Alice, Bob, Willie. Covert, Artificial Noise, Sparse, Angle domain.

论文1 Beam Focusing for Near-Field Multiuser MIMO Communications

\subsection{Near Field channel model}

To evaluate the ability to exploit near-field operation in MIMO communications, we focus on downlink multi-user systems. In particular, we consider a downlink multi-user MIMO system where the BS employs a uniform planar array (UPA), i.e., a two-dimensional antenna surface, with N e N_{e} Ne uniformly spaced radiating elements in the horizontal direction and N d N_{d} Nd elements in the vertical direction. The total number of antenna elements is thus N = N d × N e N=N_{d} \times N_{e} N=Nd×Ne . We denote the Cartesian coordinate of the l l l th element of the i i i th row as p i , l = ( x l , y i , 0 ) , l = 1 , 2 , … N e , i = 1 , 2 , … N d \mathbf{p}_{i, l}=\left(x_{l}, y_{i}, 0\right), l=1,2, \ldots N_{e}, i=1,2, \ldots N_{d} pi,l=(xl,yi,0),l=1,2,Ne,i=1,2,Nd . The BS communicates with M M M single-antenna receivers, as illustrated in Fig. 2. We consider that the receivers’ positioning information is known at the BS via high-accuracy wireless positioning techniques [3]. We focus on communications in the near-field, i.e., where the distance between the BS and the users is not larger than the Fraunhofer distance d F d_{\mathrm{F}} dF and not smaller than the Fresnel limit d N d_{\mathrm{N}} dN . The properties of near-field spherical waves allow for the generation of focused beams to facilitate communications.

To start, we model the near-field wireless channels following
existing modelling techniques for EM propagation in the radiating near-field, e.g., [30]. The signal received in free-space conditions by the legitimate user Bob, located at p b = ( x b , y b , z b ) \mathbf{p}_{b}=\left(x_{b}, y_{b}, z_{b}\right) pb=(xb,yb,zb) is given by

r ( p b ) = ∑ i = 1 N d ∑ l = 1 N e A i , l ( p b ) e − ȷ k ∣ p b − p i , l ∣ s i , l + n b \begin{equation} r\left(\mathbf{p}_{b}\right)=\sum_{i=1}^{N_{d}} \sum_{l=1}^{N_{e}} A_{i, l}\left(\mathbf{p}_{b}\right) e^{-\jmath k\left|\mathbf{p}_{b}-\mathbf{p}_{i, l}\right|} s_{i, l}+n_{b} \end{equation} r(pb)=i=1Ndl=1NeAi,l(pb)ekpbpi,lsi,l+nb

where s i , l s_{i, l} si,l denotes the signal emitted by the antenna at position p i , l \mathbf{p}_{i, l} pi,l ; the term e − ȷ k ∣ p m − p i , l ∣ e^{-\jmath k\left|\mathbf{p}_{m}-\mathbf{p}_{i, l}\right|} ekpmpi,l contains the phase due to the distance travelled by the wave from p i , l \mathbf{p}_{i, l} pi,l to p m \mathbf{p}_{m} pm ; k = 2 π / λ k= 2 \pi / \lambda k=2π/λ is the wave number; A i , l ( p m ) A_{i, l}\left(\mathbf{p}_{m}\right) Ai,l(pm) denotes the channel gain coefficient; and n m ∼ C N ( 0 , σ 2 ) n_{m} \sim \mathcal{C N}\left(0, \sigma^{2}\right) nmCN(0,σ2) is the additive white Gaussian noise (AWGN) at user m m m . Following [30], we write

A i , l ( p m ) = F ( Θ i , l , m ) λ 4 π ∣ p m − p i , l ∣ \begin{equation} A_{i, l}\left(\mathbf{p}_{m}\right)=\sqrt{F\left(\Theta_{i, l, m}\right)} \frac{\lambda}{4 \pi\left|\mathbf{p}_{m}-\mathbf{p}_{i, l}\right|} \end{equation} Ai,l(pm)=F(Θi,l,m) 4πpmpi,lλ

where Θ i , l , m = ( θ i , l , m , ϕ i , l , m ) \Theta_{i, l, m}=\left(\theta_{i, l, m}, \phi_{i, l, m}\right) Θi,l,m=(θi,l,m,ϕi,l,m) is the elevation-azimuth pair from the l l l th element of the i i i th row to the m m m th user, while F ( Θ i , l , m ) F\left(\Theta_{i, l, m}\right) F(Θi,l,m) is the radiation profile of each element, modeled as

F ( Θ i , l , m ) = { 2 ( b + 1 ) cos ⁡ b ( θ i , l , m ) θ i , l , m ∈ [ 0 , π / 2 ] 0  otherwise  \begin{equation} F\left(\Theta_{i, l, m}\right)=\left\{\begin{array}{ll} 2(b+1) \cos ^{b}\left(\theta_{i, l, m}\right) & \theta_{i, l, m} \in[0, \pi / 2] \\ 0 & \text { otherwise } \end{array}\right. \end{equation} F(Θi,l,m)={ 2(b+1)cosb(θi,l,m)0θi,l,m[0,π/2] otherwise 

In (3), the parameter b b b determines the Boresight gain, whose value depends on the specific technology adopted [30]. As an example, for the dipole case we have b = 2 b=2 b=2 , which yields F ( Θ i , l , m ) = 6 cos ⁡ 2 θ i , l , m F\left(\Theta_{i, l, m}\right)=6 \cos ^{2} \theta_{i, l, m} F(Θi,l,m)=6cos2θi,l,m . Here, the model accounts for the fact that the transmitted power is doubled by the reflective ground behind the antenna.

To obtain a more compact formulation of the received signal in (1), we define the vector

a m = [ A 1 , 1 ( p m ) e − ȷ k ∣ p m − p 1 , 1 ∣ , A 1 , 2 ( p m ) e − ȷ k ∣ p m − p 1 , 2 ∣ ⋯   , A N d , N e ( p m ) e − ȷ k ∣ p m − p N d , N e ∣ ] H \begin{align} \mathbf{a}_{m}= & {\left[A_{1,1}\left(\mathbf{p}_{m}\right) e^{-\jmath k\left|\mathbf{p}_{m}-\mathbf{p}_{1,1}\right|}, A_{1,2}\left(\mathbf{p}_{m}\right) e^{-\jmath k\left|\mathbf{p}_{m}-\mathbf{p}_{1,2}\right|}\right.} \\ & \left.\cdots, A_{N_{d}, N_{e}}\left(\mathbf{p}_{m}\right) e^{-\jmath k\left|\mathbf{p}_{m}-\mathbf{p}_{N_{d}, N_{e}}\right|}\right]^{H} \end{align} am=[A1,1(pm)ekpmp1,1,A1,2(pm)ekpmp1,2,ANd,Ne(pm)ekpmpNd,Ne]H

For convenience, we omit the location index p m \mathbf{p}_{m} pm in a m ( p m ) \mathbf{a}_{m}\left(\mathbf{p}_{m}\right) am(pm) for the rest of this paper. Using (4), we can then write the received signal at the m m m th user as

r ( p m ) = a m H s + n m , m ∈ M , \begin{align} r\left(\mathbf{p}_{m}\right)=\mathbf{a}_{m}^{H} \mathbf{s}+n_{m}, \quad m \in \mathcal{M}, \end{align} r(pm)=amHs+nm,mM,

where s = [ s 1 , 1 , s 1 , 2 ⋯   , s N d , N e ] \mathbf{s}=\left[s_{1,1}, s_{1,2} \cdots, s_{N_{d}, N_{e}}\right] s=[s1,1,s1,2,sNd,Ne] collects the transmitted signals of all antennas.

Assume the eavesdropper Willie’s location is at p w = ( x w , y w , z w ) \mathbf{p}_{w}=\left(x_{w}, y_{w}, z_{w}\right) pw=(xw,yw,zw). The signal received by Willie is given by:

r ( p w ) = ∑ i = 1 N d ∑ l = 1 N e A i , l ( p w ) e − ȷ k ∣ p w − p i , l ∣ s i , l + n w \begin{equation} r\left(\mathbf{p}_{w}\right)=\sum_{i=1}^{N_{d}} \sum_{l=1}^{N_{e}} A_{i, l}\left(\mathbf{p}_{w}\right) e^{-\jmath k\left|\mathbf{p}_{w}-\mathbf{p}_{i, l}\right|} s_{i, l}+n_{w} \end{equation} r(pw)=i=1Ndl=1NeAi,l(pw)ekpwpi,lsi,l+nw

r ( p w ) = a w H s + n w , m ∈ M , \begin{align} r\left(\mathbf{p}_{w}\right)=\mathbf{a}_{w}^{H} \mathbf{s}+n_{w}, \quad m \in \mathcal{M}, \end{align} r(pw)=awHs+nw,mM,

a b ∈ C N d N e × 1 \mathbf{a}_b \in \mathbb{C}^{N_d N_e \times 1} abCNdNe×1

a w ∈ C N d N e × 1 \mathbf{a}_w \in \mathbb{C}^{N_d N_e \times 1} awCNdNe×1

s ∈ C N d N e × 1 \mathbf{s} \in \mathbb{C}^{N_d N_e \times 1} sCNdNe×1

\subsection{DMA}

DMAs utilize radiating metamaterial elements
embedded onto the surface of a waveguide to realize recon-
figurable antennas of low cost and power consumption [24].
The typical DMA architecture is comprised of multiple
waveguides, e.g. microstrips, and each microstrip contains
multiple metamaterial elements. The elements are typically
sub-wavelength spaced, implying that one can pack a larger
number of elements in a given aperture compared to conven-
tional architectures based on, e.g., patch arrays [24]. The fre-
quency response of each individual element can be externally
adjusted by varying its local electrical properties [33].

For DMA-based transmitting architectures, each microstrip is fed by one RF-chain, and the input signal is radiated by all the elements located on the microstrip, as shown in Fig. 3©. Fig. 4 shows an example of transmitting a signal using a single microstrip with multiple elements. To formulate its input-output relationship, consider a DMA consisting of N = N d ⋅ N e N= N_{d} \cdot N_{e} N=NdNe metamaterial elements, where here N d N_{d} Nd and N e N_{e} Ne are the numbers of microstrips and elements in each microstrip, respectively. The equivalent baseband signal radiated from the l l l th element of the i i i th microstrip is s i , l = h i , l q i , l z i s_{i, l}=h_{i, l} q_{i, l} z_{i} si,l=

你可能感兴趣的:(算法)