- 《人工智能之高维数据降维算法:PCA与LDA深度剖析》
机器学习人工智能
在人工智能与机器学习蓬勃发展的当下,数据处理成为关键环节。高维数据在带来丰富信息的同时,也引入了计算复杂度高、过拟合风险增大以及数据稀疏性等难题。降维算法应运而生,它能将高维数据映射到低维空间,在减少维度的同时最大程度保留关键信息。主成分分析(PCA)与线性判别分析(LDA)作为两种常用的降维算法,在人工智能领域应用广泛。本文将深入探讨它们的原理。PCA:无监督的降维利器核心思想PCA基于最大方差
- 【leetcode刷题版】哈希表
学废了wuwu
leetcode算法python哈希算法
系列文章目录文章目录系列文章目录背景知识一、有效的字母异位词二、两个数组的交集三、快乐数四、两数之和五、四数相加六、赎金信七、三数之和八、四数之和背景知识哈希函数(HashFunction):哈希函数是一种将任意长度的输入(键)通过某种算法转换为固定长度的输出(哈希值)的函数。好的哈希函数应该能够将输入均匀地分布在哈希表中,以减少冲突。冲突(Collision):当两个不同的键通过哈希函数得到相同
- 【leetcode刷题版】回溯算法
学废了wuwu
算法leetcodepython
系列文章目录文章目录系列文章目录背景知识一、组合二、组合优化三、电话号码的字母组合四、组合总和五、组合总和Ⅱ六、分割回文串七、复原IP地址八、子集九、子集(需要去重)十、非递减子序列十一、全排列十一、全排列Ⅱ十二、重新安排行程(难)十三、N皇后十四、解数独背景知识回溯算法是一种通过试错来解决问题的算法。它会在解决问题的过程中剪枝,以避免无效搜索。在Python中实现回溯算法通常涉及以下几个步骤:定
- 【动手学运动规划】2.6 Reeds Shepp曲线
自动驾驶小白说
动手学运动规划自动驾驶算法运动规划
我出来打工,我不惦记钱,我惦记什么?—武林外传黄豆豆代码及环境配置:请参考环境配置和代码运行!ReedsShepp,通常简称为RS曲线,是一种用于路径规划的算法,由J.A.Reeds和L.A.Shepp在1990年的论文《OptimalPathsforaCarThatGoesBothForwardsandBackwards》中提出。该算法主要用于描述机器人或车辆在平面上的运动轨迹,特别是在需要考虑
- 使用django调用deepseek api,搭建ai网站
陈王卜
人工智能
一、deepseek简介DeepSeek是一家人工智能公司,专注于开发先进的人工智能模型和技术。以下是关于DeepSeek的一些详细介绍:1.公司背景DeepSeek由杭州深度求索人工智能基础技术研究有限公司开发,致力于通过创新的技术和算法,推动人工智能领域的发展。2.技术与模型DeepSeek-V3:这是DeepSeek开发的一个大型语言模型,具有超过600B的参数,在多项性能指标上与国际顶尖模
- 避免死锁的方式
蜗牛^^O^
java
1、加锁顺序保持一致2、加锁不成功,立即释放所有抢占到的锁3、银行家算法银行家算法:使用向量维护所有闲置资源每个进程不断申请的资源向量已知比如P0进程需要申请a向量,还需要申请b向量P1进程需要申请c向量,还需要申请d向量通过预判演算出一种安全序列,谁先申请谁后申请,谁先释放,释放后在申请。争取实现资源的最大化利用。但是这种算法不现实,因为每个进程申请的资源是不可预知。每个进程请求资源时,先预判是
- 【Pandas】DataFrame操作函数
Jonina Beyang
Pandaspandas
目录1.批量处理函数-apply()参数funcaxisrawresult_typeargsby_row应用(1).LeetCode-1873.计算特殊奖金2.分组函数groupby()参数by/axis/level/as_indexaxisas_index应用(1).LeetCode-184.部门工资最高的员工(2).LeetCode-1741.查找每个员工花费的总时间3.透视函数melt()参
- DirectX12(D3D12)基础教程 二“纹理”
指掀涛澜天下惊
d3d12c++vc3dc++visualstudiowindows开发语言
什么是纹理,简单理解叫贴图,比如现在一张1920X1080图片要显示在1920X1080的窗口上,那么图片像素与窗口一一对应简单的复制粘贴。如果图片大小与目标大小不一样时通过某种算法实现显示目标窗口上,这就叫纹理过滤。纹理坐标范围0到1,原点在左下角使用d3d12窗口显示一张图片,如果用gdi+现实简单多了,调用一个函数就可以解决。1.读取图片信息大小,像素深度BPP,d3d12所要的格式,数据。
- 深入了解React Fiber:React的新架构
糖糖老师436
react.js架构前端
ReactFiber是React16引入的一种全新的协调引擎,旨在解决旧版React在性能和灵活性方面的不足。本文将深入探讨ReactFiber的工作原理、其背后的设计理念,以及它如何提升应用的性能。我们会用通俗易懂的语言,帮助你轻松理解这个复杂的概念,并通过代码示例来进一步解释。1.什么是ReactFiber?ReactFiber是对React核心算法的一次彻底重构。旧版的React使用的是“S
- C++的Find算法用法,
-Mr_X-
c++算法
在C++中,可以使用std::map统计值出现次数为2的键。具体步骤如下:遍历std::map,找出所有值为2的键。使用条件语句检查每个值,符合条件时记录对应键。#include#include#includeintmain(){//创建一个std::map并插入数据std::mapdata={{1,2},{2,3},{3,2},{4,1},{5,2}};//用于存储值为2的键std::vecto
- DeepSeek技术解析:降本增效的“双刃剑”如何重塑AI产业?
爱吃青菜的大力水手
人工智能
DeepSeek技术解析:降本增效的“双刃剑”如何重塑AI产业?正面影响分析算力需求与成本大幅降低DeepSeek通过算法优化(如稀疏计算、知识蒸馏)和模型压缩技术,将云端训练算力需求降至传统大模型的35%,车端推理芯片需求减少至65%。例如,某车企使用高通8650平台后,智驾系统成本显著下降。这种优化使得中小企业能以更低成本部署AI,甚至支持本地化私有化部署(如金融行业案例),同时减少对英伟达高
- DeepSeek:突破闭源封锁,引领大模型新时代
fanstinmsl
算法语言模型
近年来,人工智能领域蓬勃发展,大模型作为其中的核心技术,其重要性不言而喻。然而,大模型的训练和部署往往面临着硬件依赖性强、成本高昂、效率低下等挑战。DeepSeek的出现,为解决这些问题提供了全新的思路和方案。DeepSeek的核心优势:1.减少硬件依赖:DeepSeek通过算法优化和架构创新,降低了对高性能硬件的依赖,使得大模型的训练和部署可以在更广泛的硬件平台上进行,极大地降低了应用门槛。**
- 刷力扣的技巧:4 个步骤 7 个关键点,事半功倍,冲进大厂!
后端go数据库算法力扣
最近好多人问我咋刷力扣呀,今天我就来给大家好好唠唠。我总结了7个要点和4个步骤,尤其是最后那提效4步骤,可太有用啦。大家一定要看到最后哦,记得点赞、收藏呀。要点一:别光追求刷题量,题解也得看咱好多同学呀,解开一道题就着急忙慌地去刷下一道,还把刷题数量当成衡量水平的唯一标准。就像有的同学跟我说:“阳哥,我在Leetcode刷了500题,去面腾讯有戏不?”结果咋样,还不是挂了。其实呀,咱不能光闷头刷,
- 【Qt】13 计算器核心解析算法(中)
c++
一、中缀转后缀中缀表达式转后缀表达式的过程类似编译过程四则运算符表达式中的括号必须匹配根据运算符优先级进行转化转换后的表达式没有括号转换后可以顺序的计算出最终结果转换过程:当前元素e为数字:输出当前元素e为运算符:1.与栈顶运算符进行优先级比较2.小于等于:将栈顶元素输出,转13.大于:将当前元素e入栈当前元素e为左括号,入栈当前元素e为右括号:1.弹出栈顶元素并输出,直至栈顶元素为左括号2.将栈
- python阈值计算_基于Python的阈值分割算法实现(二)
weixin_39872222
python阈值计算
引言前文我们讨论了关于实现OTSU算法的问题,该算法主要是针对于特征值阈值的确定,这个值可以用于论文讨论和说明。但实际情况中,我们需要对图像进行各种滤波,预处理,那么此时我们可能需要一种带坐标和投影的分割结果,本文就将带大家实现对图像进行阈值分割后进行结果的输出。本文代码共包含了四种不同的分割算法,分别是三角阈值分割法、Riddler-Calvard分割法、自适应局部均值分割法、自适应局部高斯分割
- python 语音转文本中文——DeepSpeech
drebander
python开发语言DeepSpeech
DeepSpeech简介与音频转文本实践DeepSpeech是由Mozilla开发的一种开源语音识别引擎,基于深度学习技术,采用端到端架构,可以高效地将语音转换为文本。其核心算法受BaiduDeepSpeech论文启发,使用RecurrentNeuralNetwork(RNN)处理语音数据。一、DeepSpeech的原理1.核心组件声学模型:将语音波形转换为概率分布表示。语言模型:对语音识别结果进
- BP算法的python实现 + 男女生分类器
乐宝不是酒
机器学习机器学习神经网络算法
模式识别课上学习了BP算法,并用BP算法实现了男女生分类器,之前因为时间匆忙只是简单记录了一下代码实现,现在重温一下发现代码中还是存在着一些问题,于是修改了一下Bug,也当做是复习吧。本文完整代码和数据集可以到这里:BP算法的python实现获得。BP算法是神经网络中十分经典的算法之一,要把它解释清楚实在需要很多时间,我只想重点讲一下基于BP算法的男女生分类器python实现,理论方面推荐看知乎大
- 基于Weber和simulink的齿轮啮合刚度计算
�时过境迁,物是人非
matlab
使用weber算法计算齿轮啮合刚度,具有重大意义。资源文件列表基于Weber和simulink的齿轮啮合刚度计算/testwebgear20191020.m , 46533
- 点云从入门到精通技术详解100篇-基于点云与图像纹理的 道路识别(续)
格图素书
计算机视觉人工智能
目录3.1.2图像滤波去噪3.2道路纹理特征提取3.3基于超像素分割的图像特征表达3.3.1SLIC算法3.3.2改进SLIC算法的超像素特征图获取3.4基于改进区域生长算法的道路区域分割3.4.1种子点的选择3.4.2生长准则3.4.3道路区域后处理3.5实验结果分析4基于激光雷达点云的道路识别4.1点云预处理4.1.1点云数据解析4.1.2点云数据筛选4.1.3点云坐标转换4.2基于雷达图像的
- [C++]使用纯opencv部署yolov12目标检测onnx模型
FL1623863129
深度学习c++opencvYOLO
yolov12官方框架:sunsmarterjie/yolov12【算法介绍】在C++中使用纯OpenCV部署YOLOv12进行目标检测是一项具有挑战性的任务,因为YOLOv12通常是用PyTorch等深度学习框架实现的,而OpenCV本身并不直接支持加载和运行PyTorch模型。然而,你可以通过一些间接的方法来实现这一目标,比如将PyTorch模型转换为ONNX格式,然后使用OpenCV的DNN
- 【算法】贪心算法
希冀123
算法算法贪心算法
贪心算法1.贪心介绍2.贪心本质3.最优装载问题(1)问题分析(2)算法实现(3)算法分析1.贪心介绍贪心算法总是做出当前最好的选择,期望通过局部最优选择得到全局最优的解决方案。但贪心不是从整体最优来考虑的,一旦做出选择,不会再改变,只能达到某种意义上的局部最优。简记为:想要当下最好的,但会导致目光短浅2.贪心本质应用情景:当出现两个特性——贪心选择性质和最优子结构性质时可用。(1)贪心选择性质:
- 时序差分(TD)算法:
waski
强化学习人工智能机器学习
TD算法:小猴子每走1步,看一下这个路口的V值,还有获得的奖励r;回到原来的路口,把刚刚看到的V值和奖励r进行运算,估算出V值。和蒙地卡罗(MC)不同:TD算法只需要走N步。就可以开始回溯更新。和蒙地卡罗(MC)一样:小猴需要先走N步,每经过一个状态,把奖励记录下来。然后开始回溯。那么,状态的V值怎么算呢?其实和蒙地卡罗一样,我们就假设N步之后,就到达了最终状态了。假设“最终状态”上我们之前没有走
- python-leetcode 43.二叉搜索树中第K小的元素
SylviaW08
leetcode算法职场和发展
题目:给定一个二叉搜索树的根节点root,和一个整数k,请设计算法,查找其中第K小的元素(从1开始计数)方法一:中序遍历叉搜索树具有如下性质:结点的左子树只包含小于当前结点的数。结点的右子树只包含大于当前结点的数。所有左子树和右子树自身必须也是二叉搜索树二叉树的中序遍历即按照访问左子树——根结点——右子树的方式遍历二叉树;在访问其左子树和右子树时,我们也按照同样的方式遍历;直到遍历完整棵树。因为二
- 力扣hot100——分割回文子串 + 回溯算法总结(算法代码模板)
01_
力扣hot100算法leetcode回溯算法
给你一个字符串s,请你将s分割成一些子串,使每个子串都是回文串。返回s所有可能的分割方案。解法思路:切割一个a之后,在ab中再去切割第二段.....classSolution{public:vector>res;//最终结果vectorpath;//当前结果vector>partition(strings){backtracking(s,0);returnres;}voidbacktracking
- python-leetcode 22.相交链表
SylviaW08
leetcode-pythonleetcode算法职场和发展
题目:给两个单链表的头节点heada和headb,请找出并返回两个单链表相交的起始节点。如果两个链表不存在相较节点,返回null。两个链表在C1开始相交。intersectval:相交的起始节点的值,如果不存在相交节点,这一值为0listA:第一个链表listB:第二个链表skipA:在listA从头节点开始,跳到交叉节点的节点数skipB:在listB从头节点开始跳到交叉节点的节点数方法一:哈希
- 支持向量机 (Support Vector Machine, SVM)
数维学长986
支持向量机算法机器学习
支持向量机(SupportVectorMachine,SVM)支持向量机(SVM)是一种广泛应用于分类、回归分析以及异常检测的监督学习算法。它基于结构风险最小化(StructuralRiskMinimization,SRM)原则,通过寻找一个最优超平面来实现数据的分类。SVM不仅可以处理线性可分问题,也能够通过核技巧(KernelTrick)处理非线性可分问题。1.基本概念超平面:在特征空间中,S
- 计算机二级公共基础知识考点整理,超全面,超全面
zhishitu7
数据结构算法java
第一章数据结构与算法经过对部分考生的调查以及对近年真题的总结分析,笔试部分经常考查的是算法复杂度、数据结构的概念、栈、二叉树的遍历、二分法查找,读者应对此部分进行重点学习。详细重点学习知识点:1.算法的概念、算法时间复杂度及空间复杂度的概念2.数据结构的定义、数据逻辑结构及物理结构的定义3.栈的定义及其运算、线性链表的存储方式4.树与二叉树的概念、二叉树的基本性质、完全二叉树的概念、二叉树的遍历5
- 共识算法 —— DPoS
yezhijing
区块链共识算法区块链算法
定义2014年4月由Bitshares的首席开发者DanLarimer提出。DPoS的全称是DelegatedProofofStake代理权益证明,它是由持有币的人选出一定数量(一般是101个,不一定,由项目方决定,不能少于11个)的代表节点(受托人)来运营网络(类似于人民群众选举出来的人大代表,由人大代表来维护人民的权益)。受托节点有记账的权力(也就是有生成区块、验证交易、区块上链的权限),但是
- 【matlab数学建模项目】matlab实现HSV空间的森林火灾监测系统——森林火灾监测系统
阿里matlab建模师
matlab精品科研项目数学建模matlab开发语言科研项目算法美赛全国大学生数学建模竞赛
MATLAB实现HSV空间森林火灾监测系统1、项目下载:本项目完整讲解和全套实现源码见下资源,有需要的朋友可以点击进行下载说明文档(点击下载)全套源码+学术论文基于MATLAB的HSV空间森林火灾监测系统的技术实现与应用-机器学习-HSV色彩空间-图像处理-森林火灾监测-matlab更多阿里matlab精品数学建模项目可点击下方文字链接直达查看:matlab精品数学建模项目合集(算法+源码+论文)
- leetcode 119. 杨辉三角 II
圣保罗的大教堂
leetcode每日一题leetcode
给定一个非负索引rowIndex,返回「杨辉三角」的第rowIndex行。在「杨辉三角」中,每个数是它左上方和右上方的数的和。示例1:输入:rowIndex=3输出:[1,3,3,1]示例2:输入:rowIndex=0输出:[1]示例3:输入:rowIndex=1输出:[1,1]提示:0<=rowIndex<=33分析:杨辉三角是二项式系数在三角形中的一种几何排列。可以利用组合数公式,从第一个数开
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc