- 深度 Qlearning:在直播推荐系统中的应用
AGI通用人工智能之禅
程序员提升自我硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
深度Q-learning:在直播推荐系统中的应用关键词:深度Q-learning,强化学习,直播推荐系统,个性化推荐1.背景介绍1.1问题的由来随着互联网技术的飞速发展,直播平台如雨后春笋般涌现。面对海量的直播内容,用户很难快速找到自己感兴趣的内容。因此,个性化推荐系统在直播平台中扮演着越来越重要的角色。1.2研究现状目前,主流的个性化推荐算法包括协同过滤、基于内容的推荐等。这些方法在一定程度上缓
- 分享一个基于python的电子书数据采集与可视化分析 hadoop电子书数据分析与推荐系统 spark大数据毕设项目(源码、调试、LW、开题、PPT)
计算机源码社
Python项目大数据大数据pythonhadoop计算机毕业设计选题计算机毕业设计源码数据分析spark毕设
作者:计算机源码社个人简介:本人八年开发经验,擅长Java、Python、PHP、.NET、Node.js、Android、微信小程序、爬虫、大数据、机器学习等,大家有这一块的问题可以一起交流!学习资料、程序开发、技术解答、文档报告如需要源码,可以扫取文章下方二维码联系咨询Java项目微信小程序项目Android项目Python项目PHP项目ASP.NET项目Node.js项目选题推荐项目实战|p
- 大数据毕业设计hadoop+spark+hive知识图谱租房数据分析可视化大屏 租房推荐系统 58同城租房爬虫 房源推荐系统 房价预测系统 计算机毕业设计 机器学习 深度学习 人工智能
2401_84572577
程序员大数据hadoop人工智能
做了那么多年开发,自学了很多门编程语言,我很明白学习资源对于学一门新语言的重要性,这些年也收藏了不少的Python干货,对我来说这些东西确实已经用不到了,但对于准备自学Python的人来说,或许它就是一个宝藏,可以给你省去很多的时间和精力。别在网上瞎学了,我最近也做了一些资源的更新,只要你是我的粉丝,这期福利你都可拿走。我先来介绍一下这些东西怎么用,文末抱走。(1)Python所有方向的学习路线(
- 海量数据查找最大K个值:数据结构与算法的选择
星辰@Sea
数据结构Java数据结构
在处理大数据集时,经常需要找到数据集中最大的K个元素,这样的需求在很多领域都有广泛应用,例如推荐系统中寻找评分最高的K个商品、数据分析中找出最重要的K个特征、搜索引擎中找到排名前K的结果等等。面对海量数据,传统的排序方法可能不再适用,因为它们通常具有较高的时间复杂度。因此,选择合适的数据结构和算法对于提高效率至关重要。本文将详细介绍如何在海量数据集中查找最大的K个值,探讨不同的数据结构与算法选择,
- 深入掌握大模型精髓:《实战AI大模型》带你全面理解大模型开发!
努力的光头强
人工智能langchainprompttransformer深度学习
今天,人工智能技术的快速发展和广泛应用已经引起了大众的关注和兴趣,它不仅成为技术发展的核心驱动力,更是推动着社会生活的全方位变革。特别是作为AI重要分支的深度学习,通过不断刷新的表现力已引领并定义了一场科技革命。大型深度学习模型(简称AI大模型)以其强大的表征能力和卓越的性能,在自然语言处理、计算机视觉、推荐系统等领域均取得了突破性的进展。尤其随着AI大模型的广泛应用,无数领域因此受益。AI大模型
- 【ShuQiHere】探索人工智能核心:机器学习的奥秘
ShuQiHere
人工智能机器学习
【ShuQiHere】什么是机器学习?机器学习(MachineLearning,ML)是人工智能(ArtificialIntelligence,AI)中最关键的组成部分之一。它使得计算机不仅能够处理数据,还能从数据中学习,从而做出预测和决策。无论是语音识别、自动驾驶还是推荐系统,背后都依赖于机器学习模型。机器学习与传统的编程不同,它不再依赖于人类编写的固定规则,而是通过数据自我改进模型,从而更灵活
- 如何利用AI技术来提升用户的个性化体验和社区参与度?
Itfuture03
AI前沿技术人工智能
要利用AI技术提升用户的个性化体验和社区参与度,可以采取以下几种策略:个性化推荐系统:通过AI算法分析用户的行为和偏好,提供定制化的服务和内容推荐,如智能推荐活动、健康管理等,让居民感受到社区的温暖和关怀。智能助手与聊天机器人:引入AI驱动的虚拟助手,提供实时帮助、个性化建议和交互式对话,改善客户体验。自然语言处理(NLP):实现具有AI能力的NLP,创建对用户友好的应用程序,简化用户体验,如客服
- 什么是监督学习(Supervised Learning)
救救孩子把
AIAI学习
一、监督学习概述监督学习(SupervisedLearning)是一种极具威力的机器学习方法,能够训练算法以识别数据中的模式,并据此进行精准的预测或分类。借助已有的标记数据,监督学习模型学会了从输入到输出的映射关系,进而在各类实际问题中实现自动化决策。无论是医疗诊断、金融市场分析、客户行为预测,还是提升生产效率以及个性化推荐系统等领域,监督学习都彰显出巨大的潜力与价值。随着技术的持续进步,监督学习
- 2025毕业设计指南:如何用Hadoop构建超市进货推荐系统?大数据分析助力精准采购
计算机编程指导师
Java实战集Python实战集大数据实战集课程设计hadoop数据分析springbootjava进货python
✍✍计算机编程指导师⭐⭐个人介绍:自己非常喜欢研究技术问题!专业做Java、Python、小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。⛽⛽实战项目:有源码或者技术上的问题欢迎在评论区一起讨论交流!⚡⚡Java实战|SpringBoot/SSMPython实战项目|Django微信小程序/安卓实战项目大数据实战项目⚡⚡文末获取源码文章目录⚡⚡文末获取源码基于hadoop的超市进货推荐系
- DL参考资源(二)
antkillerfarm
深度学习
DL参考资源推荐系统https://zhuanlan.zhihu.com/p/26237106深度学习在推荐算法上的应用进展http://i.dataguru.cn/mportal.php?mod=view&aid=11463深度学习在推荐领域的应用https://mp.weixin.qq.com/s/hGvQvddD3i858XSK4z08Ug主要推荐系统算法总结及Youtube深度学习推荐算法
- Springboot+vue.js+协同过滤推荐+余弦相似度算法实现新闻推荐系统
计算机程序优异哥
针对海量的新闻资讯数据,如何快速的根据用户的检索需要,完成符合用户阅读需求的新闻资讯推荐?本篇文章主要采用余弦相似度及基于用户协同过滤算法实现新闻推荐,通过余弦相似度算法完成针对不同新闻数据之间的相似性计算,实现分类标签。通过协同过滤算法发现具备相似阅读习惯的用户,展开个性化推荐。本次新闻推荐系统:主要包含技术:springboot,mybatis,mysql,javascript,vue.js,
- 基于实时深度学习的推荐系统架构设计和技术演进
阿里云云栖号
云栖号技术分享架构阿里巴巴
简介:整理自5月29日阿里云开发者大会,秦江杰和刘童璇的分享,内容包括实时推荐系统的原理以及什么是实时推荐系统、整体系统的架构及如何在阿里云上面实现,以及关于深度学习的细节介绍本文整理自5月29日阿里云开发者大会,大数据与AI一体化平台分论坛,秦江杰和刘童璇带来的《基于实时深度学习的推荐系统架构设计和技术演进》。分享内容如下:实时推荐系统的原理以及什么是实时推荐系统整体系统的架构及如何在阿里云上面
- 2019-01-25
frank_you
1.付出不亚于任何人的努力2.要谦虚,不要骄傲3.要每天反省4.活着,就要感谢5.积善行,思利他6.不要有感性的烦恼今日分享:活着,就要感谢!今天QES的客户,车还在4S店修理,先收集好资料,然后去4S店看车评估,文案出合同,虽然客户今天没时间过来签约,但是销售QES和客户经理YHF付出了努力,感谢他们!
- Make It a Chorus: Knowledge- and Time-aware Item Modeling for Sequential Recommendation sigir 20
农场主
机器学习
介绍的博客作者讲解摘要传统的推荐系统主要针对固有的、长期的用户偏好进行建模,而动态的用户需求也是非常重要的。通常,历史消费会影响用户对其关系项的需求。例如,用户倾向于一起购买互补产品(iPhone和AirPods),而不是替代产品(Powerbeats和AirPods),尽管替代购买的产品仍然迎合了他/她的偏好。为了更好地模拟历史序列的影响,以前的研究引入了项目关系的语义来捕捉用户的推荐需求。然而
- 【计算机毕设文章】美食信息推荐系统
xn19950718
计算机毕设文章参考案例课程设计美食数据库前端开发语言需求分析
毕业设计(论文)题目:美食信息推荐系统摘要使用旧方法对美食信息推荐系统的信息进行系统化管理已经不再让人们信赖了,把现在的网络信息技术运用在美食信息推荐系统的管理上面可以解决许多信息管理上面的难题,比如处理数据时间很长,数据存在错误不能及时纠正等问题。这次开发的美食信息推荐系统对菜谱管理、字典管理、论坛管理、论坛收藏管理、饮食资讯管理、用户管理、管理员管理等进行集中化处理。经过前面自己查阅的网络知识
- 菜谱推荐系统(前台android原生,后台java,SSH,mysql)
weixingliang_123
菜谱食谱android数据库java编程语言mysql
Android菜谱推荐系统(前台android原生,后台java,SSH,mysql)(程序代码,MySQL数据库)【运行环境】MyEclipse(后台)Eclipse(前台)JDK1.7tomcat7【技术栈】JAVA,JSP,mvc,SSH,MYSQL,HTML,CSS,JAVASCRIPT,JQUERY,android原生【项目包含内容】【下载全套源码】【项目功能介绍】
- 【机器学习】朴素贝叶斯方法的概率图表示以及贝叶斯统计中的共轭先验方法
Lossya
机器学习概率论人工智能朴素贝叶斯共轭先验
引言朴素贝叶斯方法是一种基于贝叶斯定理的简单概率模型,它假设特征之间相互独立。文章目录引言一、朴素贝叶斯方法的概率图表示1.1节点表示1.2边表示1.3无其他连接1.4总结二、朴素贝叶斯的应用场景2.1文本分类2.2推荐系统2.3医疗诊断2.4欺诈检测2.5情感分析2.6邮件过滤2.7信息检索2.8生物信息学三、朴素贝叶斯的优点四、朴素贝叶斯的局限性4.1特征独立性假设4.2敏感于输入数据的表示4
- 推荐系统统计库——systemstat
荣正青
推荐系统统计库——systemstatsystemstatRustlibraryforgettingsysteminformation|alsoonhttps://codeberg.org/valpackett/systemstat项目地址:https://gitcode.com/gh_mirrors/sy/systemstat简介systemstat是一个用Rust语言编写的强大库,它可以获取操
- ssm+vue计科毕业论文(毕设)最全开题怎么选
Ankhiu
javaweb毕设
文章目录1前言2选题汇总3详细介绍题目1:基于SSM的毕业设计管理系统题目2:基于SSM的病人跟踪治疗信息管理系统题目3:基于SSM的大学生兼职跟踪系统题目4:基于SSM的大学生企业推荐系统题目5:基于SSM的电影院在线售票系统题目6:基于SSM的房屋出租出售系统题目7:基于SSM的房屋租赁系统题目8:基于SSM的个人健康信息管理系统题目9:基于SSM的共享充电宝管理系统题目10:基于SSM的即动
- Spark MLlib模型训练—聚类算法 K-means
不二人生
SparkML实战算法spark-ml聚类
SparkMLlib模型训练—聚类算法K-meansK-means是一种经典的聚类算法,广泛应用于数据挖掘、图像处理、推荐系统等领域。它通过将数据划分为(k)个簇(clusters),使得同一簇内的数据点尽可能相似,而不同簇之间的数据点差异尽可能大。ApacheSpark提供了K-means聚类算法的高效实现,支持大规模数据的分布式计算。本文将详细介绍K-means聚类算法的原理,并结合Spark
- Django+Vue协同过滤算法图书推荐系统的设计与实现
赵广陆
projectdjangovue.js算法
目录1项目介绍2项目截图3核心代码3.1需要的环境3.2Django接口层3.3实体类3.4config.ini3.5启动类3.5Vue4数据库表设计5文档参考6计算机毕设选题推荐7源码获取1项目介绍博主个人介绍:CSDN认证博客专家,CSDN平台Java领域优质创作者,全网30w+粉丝,超300w访问量,专注于大学生项目实战开发、讲解和答疑辅导,对于专业性数据证明一切!主要项目:javaweb、
- 偏见的亮点:认知偏见如何增强推荐系统
量子位AI
人工智能机器学习
认知偏见,曾被视为人类决策过程中的缺陷,现在被认为对学习和决策有潜在的积极影响。然而,在机器学习中,尤其是在搜索和排序系统中,认知偏见的研究仍需改进。尽管有大量研究集中在探讨这些偏见如何影响模型训练和机器行为的道德性,但信息检索领域大多关注于检测偏见及其对搜索行为的影响。这在利用这些认知偏见来增强检索算法方面带来了挑战,这一领域尚未广泛探讨,对研究者而言提供了机遇和挑战。现有的一些方法,如推荐系统
- 大数据:实时大数据和离线大数据
爱写代码的July
大数据与云计算大数据
一实时大数据的介绍及应用场景实时大数据主要是对实时数据流进行处理和分析,数据在生成后几乎立即被处理,以支持快速决策。核心特性低延迟:数据在毫秒或秒级别内处理,几乎实时返回结果。连续流式处理:数据像流一样不断到达并被处理,而不是分批次处理。实时反馈:能够及时响应业务需求,如实时告警、推荐、监控等。应用场景实时推荐系统:如电商、社交媒体等,根据用户行为进行个性化推荐。实时监控:网络安全系统实时监控流量
- 2019-01-25
杰哥大宁
1.付出不亚于任何人的努力2.要谦虚,不要骄傲3.要每天反省4.活着,就要感谢5.积善行,思利他6.不要有感性的烦恼今日分享,昨天开了团队长会议,感觉自己做的有很多不足的地方,要多多向优秀的团队学习
- 计算机毕业设计hadoop+spark知识图谱房源推荐系统 房价预测系统 房源数据分析 房源可视化 房源大数据大屏 大数据毕业设计 机器学习
计算机毕业设计大全
创新点:1.支付宝沙箱支付2.支付邮箱通知(JavaMail)3.短信验证码修改密码4.知识图谱5.四种推荐算法(协同过滤基于用户、物品、SVD混合神经网络、MLP深度学习模型)6.线性回归算法预测房价7.Python爬虫采集链家数据8.AI短信识别9.百度地图API10.lstm情感分析11.spark大屏可视化开发技术:springbootvue.jspythonechartssparkmys
- 个性化推荐系统-离线召回模型验证
山水阳泉曲
python功能测试线性代数矩阵推荐算法vue
文章目录背景前端核心组件模拟操作用户历史行为后端导入依赖启动服务根据uid获取推荐列表相关推荐用户历史记录用户行为数据上报背景计划构建并优化一个覆盖前端与后端的个性化推荐系统中的离线召回模块。此模块旨在通过高效的数据处理与分析,预先筛选出用户可能感兴趣的内容或商品,为后续的实时推荐流程提供丰富且精准的候选集。为了确保实施效果与性能,我们将设计最简前端界面以直观展示召回结果,同时构建后端服务来处理大
- 基于SpringBoot+Vue协同过滤视频推荐系统
f168bc2b3926
1.技术介绍java+springboot+mysql+mybatis+Vue开发工具:eclipse或idea2.主要功能说明:1)用户注册、登录、首页、个人中心、我的收藏、视频新增、后台管理、2)管理员个人中心、用户管理、视频标签管理、视频信息管理、轮播图管理3)协同过滤算法根据用户的收藏喜好行为计算相似度,给有相近的用户行为推荐视频比如:用户1收藏了视频1、2、3用户2收藏了视频1、3、6用
- 2019-01-25
杏联刘卓彦
友谊的小船说翻就翻,但是,多年的友谊,肯定是长存的。就像是上个星期,我们约了以前小学的同学在小学聚一聚,也随便看望一下老师。虽然一开始本来已经约好的小学同学没有过来,但是许久之后,他们也来了。所以呢,很多时候,我们的友谊的小船并不是说翻就翻的。好好珍惜友谊吧!图片发自App
- 大数据毕业设计hadoop+spark+hive微博舆情情感分析 知识图谱微博推荐系统
qq_79856539
javaweb大数据hadoop课程设计
(一)Selenium自动化Python爬虫工具采集新浪微博评论、热搜、文章等约10万条存入.csv文件作为数据集;(二)使用pandas+numpy或MapReduce对数据进行数据清洗,生成最终的.csv文件并上传到hdfs;(三)使用hive数仓技术建表建库,导入.csv数据集;(四)离线分析采用hive_sql完成,实时分析利用Spark之Scala完成;(五)统计指标使用sqoop导入m
- 大数据毕业设计天hadoop+spark+hive游戏推荐系统 游戏数据分析可视化大屏 steam游戏爬虫 游戏大数据 机器学习 知识图谱 计算机毕业设计 机器学习 深度学习 人工智能 知识图谱
2401_84159688
程序员大数据hadoop人工智能
|—||一、选题的目的和意义用户往往因为不能及时查看游戏信息而造成许多烦恼。另一方面,游戏商城平台没能进行系统的管理与维护使游戏信息没能及时的更新。而传统的游戏信息管理,采用的还是手工备案、人工查询的方式。但是随之游戏信息的增多这种管理方式的工作量不断加大,这种做法就存在费时费力、缺乏时效性、不利于调动人员的积极性等缺点。一旦网站建立好之后,一方面,用户可以在第一时间在系统里查询所需的信息,另一方
- 遍历dom 并且存储(将每一层的DOM元素存在数组中)
换个号韩国红果果
JavaScripthtml
数组从0开始!!
var a=[],i=0;
for(var j=0;j<30;j++){
a[j]=[];//数组里套数组,且第i层存储在第a[i]中
}
function walkDOM(n){
do{
if(n.nodeType!==3)//筛选去除#text类型
a[i].push(n);
//con
- Android+Jquery Mobile学习系列(9)-总结和代码分享
白糖_
JQuery Mobile
目录导航
经过一个多月的边学习边练手,学会了Android基于Web开发的毛皮,其实开发过程中用Android原生API不是很多,更多的是HTML/Javascript/Css。
个人觉得基于WebView的Jquery Mobile开发有以下优点:
1、对于刚从Java Web转型过来的同学非常适合,只要懂得HTML开发就可以上手做事。
2、jquerym
- impala参考资料
dayutianfei
impala
记录一些有用的Impala资料
1. 入门资料
>>官网翻译:
http://my.oschina.net/weiqingbin/blog?catalog=423691
2. 实用进阶
>>代码&架构分析:
Impala/Hive现状分析与前景展望:http
- JAVA 静态变量与非静态变量初始化顺序之新解
周凡杨
java静态非静态顺序
今天和同事争论一问题,关于静态变量与非静态变量的初始化顺序,谁先谁后,最终想整理出来!测试代码:
import java.util.Map;
public class T {
public static T t = new T();
private Map map = new HashMap();
public T(){
System.out.println(&quo
- 跳出iframe返回外层页面
g21121
iframe
在web开发过程中难免要用到iframe,但当连接超时或跳转到公共页面时就会出现超时页面显示在iframe中,这时我们就需要跳出这个iframe到达一个公共页面去。
首先跳转到一个中间页,这个页面用于判断是否在iframe中,在页面加载的过程中调用如下代码:
<script type="text/javascript">
//<!--
function
- JAVA多线程监听JMS、MQ队列
510888780
java多线程
背景:消息队列中有非常多的消息需要处理,并且监听器onMessage()方法中的业务逻辑也相对比较复杂,为了加快队列消息的读取、处理速度。可以通过加快读取速度和加快处理速度来考虑。因此从这两个方面都使用多线程来处理。对于消息处理的业务处理逻辑用线程池来做。对于加快消息监听读取速度可以使用1.使用多个监听器监听一个队列;2.使用一个监听器开启多线程监听。
对于上面提到的方法2使用一个监听器开启多线
- 第一个SpringMvc例子
布衣凌宇
spring mvc
第一步:导入需要的包;
第二步:配置web.xml文件
<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5"
xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi=
- 我的spring学习笔记15-容器扩展点之PropertyOverrideConfigurer
aijuans
Spring3
PropertyOverrideConfigurer类似于PropertyPlaceholderConfigurer,但是与后者相比,前者对于bean属性可以有缺省值或者根本没有值。也就是说如果properties文件中没有某个bean属性的内容,那么将使用上下文(配置的xml文件)中相应定义的值。如果properties文件中有bean属性的内容,那么就用properties文件中的值来代替上下
- 通过XSD验证XML
antlove
xmlschemaxsdvalidationSchemaFactory
1. XmlValidation.java
package xml.validation;
import java.io.InputStream;
import javax.xml.XMLConstants;
import javax.xml.transform.stream.StreamSource;
import javax.xml.validation.Schem
- 文本流与字符集
百合不是茶
PrintWrite()的使用字符集名字 别名获取
文本数据的输入输出;
输入;数据流,缓冲流
输出;介绍向文本打印格式化的输出PrintWrite();
package 文本流;
import java.io.FileNotFound
- ibatis模糊查询sqlmap-mapping-**.xml配置
bijian1013
ibatis
正常我们写ibatis的sqlmap-mapping-*.xml文件时,传入的参数都用##标识,如下所示:
<resultMap id="personInfo" class="com.bijian.study.dto.PersonDTO">
<res
- java jvm常用命令工具——jdb命令(The Java Debugger)
bijian1013
javajvmjdb
用来对core文件和正在运行的Java进程进行实时地调试,里面包含了丰富的命令帮助您进行调试,它的功能和Sun studio里面所带的dbx非常相似,但 jdb是专门用来针对Java应用程序的。
现在应该说日常的开发中很少用到JDB了,因为现在的IDE已经帮我们封装好了,如使用ECLI
- 【Spring框架二】Spring常用注解之Component、Repository、Service和Controller注解
bit1129
controller
在Spring常用注解第一步部分【Spring框架一】Spring常用注解之Autowired和Resource注解(http://bit1129.iteye.com/blog/2114084)中介绍了Autowired和Resource两个注解的功能,它们用于将依赖根据名称或者类型进行自动的注入,这简化了在XML中,依赖注入部分的XML的编写,但是UserDao和UserService两个bea
- cxf wsdl2java生成代码super出错,构造函数不匹配
bitray
super
由于过去对于soap协议的cxf接触的不是很多,所以遇到了也是迷糊了一会.后来经过查找资料才得以解决. 初始原因一般是由于jaxws2.2规范和jdk6及以上不兼容导致的.所以要强制降为jaxws2.1进行编译生成.我们需要少量的修改:
我们原来的代码
wsdl2java com.test.xxx -client http://.....
修改后的代
- 动态页面正文部分中文乱码排障一例
ronin47
公司网站一部分动态页面,早先使用apache+resin的架构运行,考虑到高并发访问下的响应性能问题,在前不久逐步开始用nginx替换掉了apache。 不过随后发现了一个问题,随意进入某一有分页的网页,第一页是正常的(因为静态化过了);点“下一页”,出来的页面两边正常,中间部分的标题、关键字等也正常,唯独每个标题下的正文无法正常显示。 因为有做过系统调整,所以第一反应就是新上
- java-54- 调整数组顺序使奇数位于偶数前面
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
import ljn.help.Helper;
public class OddBeforeEven {
/**
* Q 54 调整数组顺序使奇数位于偶数前面
* 输入一个整数数组,调整数组中数字的顺序,使得所有奇数位于数组的前半部分,所有偶数位于数组的后半
- 从100PV到1亿级PV网站架构演变
cfyme
网站架构
一个网站就像一个人,存在一个从小到大的过程。养一个网站和养一个人一样,不同时期需要不同的方法,不同的方法下有共同的原则。本文结合我自已14年网站人的经历记录一些架构演变中的体会。 1:积累是必不可少的
架构师不是一天练成的。
1999年,我作了一个个人主页,在学校内的虚拟空间,参加了一次主页大赛,几个DREAMWEAVER的页面,几个TABLE作布局,一个DB连接,几行PHP的代码嵌入在HTM
- [宇宙时代]宇宙时代的GIS是什么?
comsci
Gis
我们都知道一个事实,在行星内部的时候,因为地理信息的坐标都是相对固定的,所以我们获取一组GIS数据之后,就可以存储到硬盘中,长久使用。。。但是,请注意,这种经验在宇宙时代是不能够被继续使用的
宇宙是一个高维时空
- 详解create database命令
czmmiao
database
完整命令
CREATE DATABASE mynewdb USER SYS IDENTIFIED BY sys_password USER SYSTEM IDENTIFIED BY system_password LOGFILE GROUP 1 ('/u01/logs/my/redo01a.log','/u02/logs/m
- 几句不中听却不得不认可的话
datageek
1、人丑就该多读书。
2、你不快乐是因为:你可以像猪一样懒,却无法像只猪一样懒得心安理得。
3、如果你太在意别人的看法,那么你的生活将变成一件裤衩,别人放什么屁,你都得接着。
4、你的问题主要在于:读书不多而买书太多,读书太少又特爱思考,还他妈话痨。
5、与禽兽搏斗的三种结局:(1)、赢了,比禽兽还禽兽。(2)、输了,禽兽不如。(3)、平了,跟禽兽没两样。结论:选择正确的对手很重要。
6
- 1 14:00 PHP中的“syntax error, unexpected T_PAAMAYIM_NEKUDOTAYIM”错误
dcj3sjt126com
PHP
原文地址:http://www.kafka0102.com/2010/08/281.html
因为需要,今天晚些在本机使用PHP做些测试,PHP脚本依赖了一堆我也不清楚做什么用的库。结果一跑起来,就报出类似下面的错误:“Parse error: syntax error, unexpected T_PAAMAYIM_NEKUDOTAYIM in /home/kafka/test/
- xcode6 Auto layout and size classes
dcj3sjt126com
ios
官方GUI
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/AutolayoutPG/Introduction/Introduction.html
iOS中使用自动布局(一)
http://www.cocoachina.com/ind
- 通过PreparedStatement批量执行sql语句【sql语句相同,值不同】
梦见x光
sql事务批量执行
比如说:我有一个List需要添加到数据库中,那么我该如何通过PreparedStatement来操作呢?
public void addCustomerByCommit(Connection conn , List<Customer> customerList)
{
String sql = "inseret into customer(id
- 程序员必知必会----linux常用命令之十【系统相关】
hanqunfeng
Linux常用命令
一.linux快捷键
Ctrl+C : 终止当前命令
Ctrl+S : 暂停屏幕输出
Ctrl+Q : 恢复屏幕输出
Ctrl+U : 删除当前行光标前的所有字符
Ctrl+Z : 挂起当前正在执行的进程
Ctrl+L : 清除终端屏幕,相当于clear
二.终端命令
clear : 清除终端屏幕
reset : 重置视窗,当屏幕编码混乱时使用
time com
- NGINX
IXHONG
nginx
pcre 编译安装 nginx
conf/vhost/test.conf
upstream admin {
server 127.0.0.1:8080;
}
server {
listen 80;
&
- 设计模式--工厂模式
kerryg
设计模式
工厂方式模式分为三种:
1、普通工厂模式:建立一个工厂类,对实现了同一个接口的一些类进行实例的创建。
2、多个工厂方法的模式:就是对普通工厂方法模式的改进,在普通工厂方法模式中,如果传递的字符串出错,则不能正确创建对象,而多个工厂方法模式就是提供多个工厂方法,分别创建对象。
3、静态工厂方法模式:就是将上面的多个工厂方法模式里的方法置为静态,
- Spring InitializingBean/init-method和DisposableBean/destroy-method
mx_xiehd
javaspringbeanxml
1.initializingBean/init-method
实现org.springframework.beans.factory.InitializingBean接口允许一个bean在它的所有必须属性被BeanFactory设置后,来执行初始化的工作,InitialzingBean仅仅指定了一个方法。
通常InitializingBean接口的使用是能够被避免的,(不鼓励使用,因为没有必要
- 解决Centos下vim粘贴内容格式混乱问题
qindongliang1922
centosvim
有时候,我们在向vim打开的一个xml,或者任意文件中,拷贝粘贴的代码时,格式莫名其毛的就混乱了,然后自己一个个再重新,把格式排列好,非常耗时,而且很不爽,那么有没有办法避免呢? 答案是肯定的,设置下缩进格式就可以了,非常简单: 在用户的根目录下 直接vi ~/.vimrc文件 然后将set pastetoggle=<F9> 写入这个文件中,保存退出,重新登录,
- netty大并发请求问题
tianzhihehe
netty
多线程并发使用同一个channel
java.nio.BufferOverflowException: null
at java.nio.HeapByteBuffer.put(HeapByteBuffer.java:183) ~[na:1.7.0_60-ea]
at java.nio.ByteBuffer.put(ByteBuffer.java:832) ~[na:1.7.0_60-ea]
- Hadoop NameNode单点问题解决方案之一 AvatarNode
wyz2009107220
NameNode
我们遇到的情况
Hadoop NameNode存在单点问题。这个问题会影响分布式平台24*7运行。先说说我们的情况吧。
我们的团队负责管理一个1200节点的集群(总大小12PB),目前是运行版本为Hadoop 0.20,transaction logs写入一个共享的NFS filer(注:NetApp NFS Filer)。
经常遇到需要中断服务的问题是给hadoop打补丁。 DataNod