树与二叉树(考研版)

文章目录

  • 树与二叉树
    • 树的基本概念
      • 结点、树属性的描述
      • 树的性质
    • 二叉树的概念
      • 二叉树的性质
      • 二叉树的构建
      • 二叉树的遍历
        • 先序遍历
        • 中序遍历
        • 后序遍历
        • 层次遍历
      • 递归算法和非递归算法的转换
        • 源代码
    • 线索二叉树
      • 二叉树的线索化
      • 线索二叉树 找前驱/后继
    • 树和森林
      • 树的存储
    • 树与二叉树的应用
      • 哈夫曼树和哈夫曼编码
      • 并查集
    • 习题总结

树与二叉树

树的基本概念

树的定义是递归的,即在树的定义中又用到了其自身,树是一种递归的数据结构。同时是一种分层结构,具有以下两个特点:

  • 树的根节点没有前驱,除根节点外所有结点有且只有一个前驱。
  • 树中所有结点都可以有零个或多个后继。

特点:树适合于表示具有层次结构的数据。

结点、树属性的描述

树与二叉树(考研版)_第1张图片
  1. 树中一个结点的孩子个数称为该结点的度,树中结点的最大度数称为树的度

    • 结点的度:有几个孩子(分支)
    • 树的度:各结点的度的最大值

    如结点B的度为 2,结点D的度为 3,树的度为 3,剩余结点的度数都小于3,因此这颗树的度为3。

  2. 结点的深度、高度和层次

    结点的深度:从上往下数(默认从 1 开始)

    结点的高度:从下往上数

    树的层次:总共多少层

树的性质

树具有如下最基本的性质:

  1. 结点数 = 总度数 + 1

    结点的度:结点有几个孩子(分支)

    eg:【2010统考真题】在一棵度为4的树 T T T中,若有20个度为4的结点,10个度为3的结点,1个度为2的结点,10个度为1的结点,则树 T T T的叶子结点个数是( B B B

    A . 41 A.41 A.41 B . 82 B.82 B.82 C . 113 C.113 C.113 D . 122 D.122 D.122

    结点数:20 + 10 + 1 + 10 + X 叶子 X_{叶子} X叶子 = 41 + X 叶子 X_{叶子} X叶子

    总度数:20*4 + 10*3 + 1*2 + 10*1 = 122

    结点数 = 总度数 + 1 => 41 + X 叶子 X_{叶子} X叶子 = 122 + 1 => X 叶子 X_{叶子} X叶子 = 122 + 1 - 41 = 82

  2. 度为m的树m叉树的区别

    • 树的度:各结点的度的最大值
    • m叉树:每个结点最多只能有m个孩子的树
    度为m的树 m叉树
    任意结点的度≤m(最多m个孩子) 任意结点的度≤m(最多m个孩子)
    至少有一个结点度=m(有m个孩子) 允许所有结点的度都<m
    一定是非空树,至少有m+1个结点 可以是空树

    树与二叉树(考研版)_第2张图片

  3. 度为 m m m的树第 i i i层至多有 m i − 1 m^{i -1} mi1个结点, m m m叉树第 i i i层至多有 m i − 1 m^{i - 1} mi1个结点

  4. 高度为 h h h m m m叉树至多有 m h − 1 m − 1 \frac {m^{h} - 1}{m -1} m1mh1个结点

    等比数列求和公式:
    a + a q + a q 2 + ⋅ ⋅ ⋅ + a q n − 1 = a ( 1 − q n ) 1 − q a + aq + aq^2 + ··· + aq^{n - 1} = \frac{a(1-q^n)}{1-q} a+aq+aq2+⋅⋅⋅+aqn1=1qa(1qn)

    每层的结点求和即 m 0 + m 1 + m 2 + ⋅ ⋅ ⋅ ⋅ + m h − 1 m^0 + m^1 + m^2 + ····+ m^{h-1} m0+m1+m2+⋅⋅⋅⋅+mh1,利用等比数列求和即可。

  5. 高度为 h h h m m m叉树至少有 h h h个结点,高度为 h h h、度为 m m m的树至少有 h + m − 1 h+m-1 h+m1个结点。

    树与二叉树(考研版)_第3张图片
  6. 具有n个结点的m叉树的最小高度为 ⌈ l o g m ( n ( m − 1 ) + 1 ) ⌉ \lceil log_m(n(m -1) + 1) \rceil logm(n(m1)+1)⌉

    高度最小的情况:所有结点都有 m m m个孩子

    证明过程如下:前 h − 1 h-1 h1层最多有$\frac {m^{h -1} - 1}{m - 1} 个结点,前 h 层最多有 个结点,前h层最多有 个结点,前h层最多有\frac {m^{h} - 1}{m - 1} $个结点
    m h − 1 − 1 m − 1 < n ≤ m h − 1 m − 1 m h − 1 < n ( m − 1 ) + 1 ≤ m h h − 1 < l o g m ( n ( m − 1 ) + 1 ) ≤ h h m i n = ⌈ l o g m ( n ( m − 1 ) + 1 ) ⌉ \frac {m^{h -1} - 1}{m - 1} < n ≤ \frac {m^{h} - 1}{m - 1}\\ m^{h-1} < n(m -1) + 1 ≤ mh\\ h - 1 < log_m(n(m - 1) + 1) ≤ h\\ h_{min} =\lceil log_m(n(m -1) + 1) \rceil m1mh11<nm1mh1mh1<n(m1)+1mhh1<logm(n(m1)+1)hhmin=logm(n(m1)+1)⌉

二叉树的概念

本章需要着重讨论的是二叉树(Binary Tree)。

二叉树是一种特殊的树形结构,其特点是每个节点至多只有两棵子树(即二叉树中不存在度大于2的结点),并且二叉树的子树有左右之分,其次序不能任意颠倒。一棵二叉树大概长这样:

树与二叉树(考研版)_第4张图片

并且二叉树任何结点的子树是有左右之分的,不能颠倒顺序,比如A结点左边的子树,称为左子树,右边的子树称为右子树。

二叉树有 5 中基本形态,分别是:

树与二叉树(考研版)_第5张图片

几种特殊的二叉树

  1. 满二叉树:在一棵二叉树中,所有分支结点都存在左子树和右子树,且叶子结点都在同一层。

  2. 完全二叉树:只有最后一层有空缺,并且所有的叶子结点是按照从左往右的顺序排列的。所以,一棵满二叉树,一定是一棵完全二叉树。

  3. 二叉排序树:可用于元素的排序、搜索

    左子树上所有结点的关键字均小于根结点的关键字

    右子树上所有结点的关键字均大于根结点的关键字

    左子树和右子树又各是一颗二叉排序树

  4. 平衡二叉树:能更高的搜索效率

    树上任意一个结点的左子树和右子树的深度之差不超过 1。

    树与二叉树(考研版)_第6张图片

二叉树的性质

假设一棵二叉树中结点总数为 n n n,度为0、1、2的结点数量分别为 n 0 n_0 n0 n 1 n_1 n1 n 2 n_2 n2,结点的边数为 E E E.

性质一非空二叉树上的叶子节点数等于度为2的结点树加1,即 n 0 = n 2 + 1 n_0 = n_2 + 1 n0=n2+1

由于一棵二叉树中只有这三种类型的结点,那么可以直接得到结点总数:
n = n 0 + n 1 + n 2 n = n_0 + n_1 + n_2 n=n0+n1+n2
接下来换一个思路,从边的数量上考虑。因为每个结点有且仅有一条边与其父结点相连,那么边数之和就可以表示为:
E = n 1 + 2 n 2 E = n_1 + 2n_2 E=n1+2n2

度为 1 的结点有一条边,度为 2 的结点有两条边,度为 0 的结点没有边。

根据前面树的基本性质可知,结点的边数为 E = n − 1 E = n - 1 E=n1。因此,可以得到另一个计算结点总数的方式(结合公式 (3)(4))得:
E = n − 1 = n 1 + 2 n 2 ( 公式 4 ) n = n 1 + 2 n 2 + 1 n = n 1 + 2 n 2 + 1 = n 0 + n 1 + n 2 ( 公式 3 ) n 0 = n 2 + 1 E = n - 1 = n_1 + 2n_2(公式 4)\\ n = n_1 + 2n_2 + 1\\ n = n_1 + 2n_2 + 1 = n_0 + n_1 + n_2(公式 3)\\ n_0 = n_2 +1 E=n1=n1+2n2(公式4)n=n1+2n2+1n=n1+2n2+1=n0+n1+n2(公式3)n0=n2+1

性质二非空二叉树上第k层上至多有 2 k − 1 ( k ≥ 1 ) 2^{k - 1}(k≥1) 2k1(k1)个结点。

第一层至多有 2 1 − 1 2^{1-1} 211个结点,第二层至多有 2 2 − 1 = 2 2^{2-1} = 2 221=2个结点,以此类推,可以证明其为一个公比为 2 的等比数列 2 k − 1 2^{k-1} 2k1

性质三高度为k的二叉树至多有 2 k − 1 2^k - 1 2k1个结点 ( h ≥ 1 ) (h≥1) (h1)

对于一棵深度为k的二叉树,可以具有的最大结点数量为:
n = 2 0 + 2 1 + 2 2 + . . . + 2 k − 1 n = 2^0 + 2^1 + 2^2 + ...+ 2^{k - 1} n=20+21+22+...+2k1
实际上每一层结点数量构成了一个以公比q = 2的等比数列,结合等比数列求和公式得:
S n = a 1 × ( 1 − q n ) 1 − q = 1 × ( 1 − 2 k ) 1 − 2 = − ( 1 − 2 k ) = 2 k − 1 S_n = \frac {a_1 × (1 - q_n)}{1 - q} = \frac{1×(1 - 2^k)}{1 - 2} = -(1 - 2^k) = 2^k - 1 Sn=1qa1×(1qn)=121×(12k)=(12k)=2k1

性质四

对一棵有n个结点、深度为k的完全二叉树按从上到下、从左到右的顺序依次编号 1,2,···,n,现在对于任意一个结点i有以下关系:

  1. 对于一个拥有左右孩子的结点i来说,其左孩子为2i,右孩子为2i+1
  2. 如果i = 1,那么此结点为二叉树的根节点;如果i > 1,那么其父结点就是 ⌊ i / 2 ⌋ \lfloor i/2 \rfloor i/2,比如第三个结点的父节点为第1个结点,也就是根节点。
  3. 如果2i > n,则结点i没有左孩子,比如下图中的二叉树,n为5,假设此时i = 3,那么2i = 6 > n = 5,说明第三个结点没有左孩子。
  4. 如果2i + 1 > n,则结点i没有右孩子。

树与二叉树(考研版)_第7张图片

性质五一棵具有n个结点的**完全二叉树**深度为 k = ⌊ l o g 2 n + 1 ⌋ k = \lfloor log_2n + 1 \rfloor k=log2n+1

完全二叉树除了最后一层有空缺外,其他层数都是饱满的。假设这棵二叉树为满二叉树,那么根据我们前面得到的性质,假设层数为k层,那么总结点数量为 n = 2 k − 1 n = 2^k - 1 n=2k1;根据完全二叉树性质,最后一层可满可不满(1~k-1层为满二叉树的情况下,总结点数 2 k − 1 − 1 2^{k - 1} - 1 2k11),那么一棵完全二叉树结点的总结点数n满足:
2 k − 1 − 1 < n ≤ 2 k − 1 2^{k - 1} - 1 < n ≤ 2^k - 1 2k11<n2k1
因为n是一个整数,那么可以写成:
2 k − 1 ≤ n ≤ 2 k − 1 2^{k - 1} ≤ n ≤ 2^k - 1 2k1n2k1
树与二叉树(考研版)_第8张图片

这里左边可以取等号的情况如上图所示,该树为完全二叉树的极端情况。

现在只看左边的不等式,两边取对数得:
k − 1 ≤ l o g 2 n k - 1 ≤ log_2n k1log2n
综上所述,一棵具有n个结点的完全二叉树深度为 k = ⌊ l o g 2 n + 1 ⌋ k = \lfloor log_2n + 1\rfloor k=log2n+1

⚠️:性质五推导比较复杂,推荐直接记忆✌️。

二叉树练习题

  1. 由三个结点可以构造出多少种不同的二叉树?

    手画直接的到结果,一共是五种。但是,如果要求N个结点的话如何求解呢?可以利用动态规划,接下来我们分析一下:

    • 假设现在没有结点或者一个结点,那么只有一种情况 h ( 0 ) = h ( 1 ) = 1 h(0) = h(1) = 1 h(0)=h(1)=1

    • 假设现在有两个结点,其中一个为根节点,剩下的一个结点可以为左结点或右结点。如果为左结点,那么右边 0 个结点;如果为右结点,那么左边 0 个结点,则 h ( 2 ) = h ( 1 ) × h ( 0 ) + h ( 0 ) × h ( 1 ) = 2 h(2) = h(1)×h(0) + h(0)×h(1) = 2 h(2)=h(1)×h(0)+h(0)×h(1)=2

    • 假设现在有三个结点,其中一个为根节点,剩下的两个结点情况就有三种情况,两个都在左边或者右边,或者一边一个,则 h ( 3 ) = h ( 2 ) × h ( 0 ) + h ( 1 ) × h ( 1 ) + h ( 0 ) × h ( 0 ) = 2 + 1 + 2 = 5 h(3) = h(2) × h(0) + h(1) × h(1) + h(0) × h(0) = 2 + 1 + 2 = 5 h(3)=h(2)×h(0)+h(1)×h(1)+h(0)×h(0)=2+1+2=5

    • 总结:N每次加一,项数就会多一项,所以只需要按照规律把所有情况的结果相加即可。

    #include 
    
    int main() {
        int n;
        scanf("%d", &n);
        int dp[n + 1];
        dp[0] = dp[1] = 1;
        for (int i = 2; i <= n; ++i) {
            dp[i] = 0;
            for (int j = 0; j < i; ++j) {
                dp[i] += dp[i - j - 1] * dp[j];
            }
        }
        printf("%d",dp[n]);
    }
    

    树与二叉树(考研版)_第9张图片

【2009年统考真题】已知一棵完全二叉树的第6层(设根为第1层)有8个叶结点,则该完全二叉树的结点个数最多是(C)

A . 39 A.39 A.39 B . 53 B.53 B.53 C . 111 C.111 C.111 D . 119 D.119 D.119

解:第6层最多 2 6 − 1 = 32 2^{6-1} = 32 261=32个结点,8个叶结点,则剩下的24个结点均有左右孩子(满足最多结点个数),即第7层有24*2=48个结点,前6层一共有 2 6 − 1 = 63 2^{6} - 1 = 63 261=63个结点,所有最多有 63 + 48 = 111 63 + 48 = 111 63+48=111个结点。

二叉树的构建

定义结构体

typedef char E;

typedef struct TreeNode {
    E element;
    struct TreeNode *left, *right;
} TreeNode, *Node;

树与二叉树(考研版)_第10张图片

假设我们要构建这个二叉树,首先我们要创建好这几个结点:

int main() {
    Node a = malloc(sizeof(TreeNode));
    Node b = malloc(sizeof(TreeNode));
    Node c = malloc(sizeof(TreeNode));
    Node d = malloc(sizeof(TreeNode));
    Node e = malloc(sizeof(TreeNode));
    a->element = 'A';
    b->element = 'B';
    c->element = 'C';
    d->element = 'D';
    e->element = 'E';
}

然后从上往下,依次连接每一个结点,并且测试是否连接成功:

int main() {
  	//创建结点代码....
    a->left = b;
    a->right = c;
    b->left = d;
    b->right = e;
    c->left = c->right = NULL;
    d->left = d->right = NULL;
    e->left = e->right = NULL;

    printf("%c", a->left->left->element);
}

注意:这里需要将叶子结点或者其他只有一个结点的另一个空结点设置为NULL

树与二叉树(考研版)_第11张图片

与此同时,我们在printf函数部分设置断点debug:

树与二叉树(考研版)_第12张图片

二叉树的遍历

前面通过使用链式结构,成功构建出了一棵二叉树,接着我们来看看如何遍历一棵二叉树,也就是说想要访问二叉树的每一个结点。由于树形结构特殊,遍历顺序并不唯一,所以一共有四种访问方式:**先序遍历、中序遍历、后序遍历、层序遍历。**不同的访问方式输出都结点顺序也不同。

树与二叉树(考研版)_第13张图片

首先需要将这棵二叉树组装好,这一步比较繁琐,无可避免

int main() {
    Node a = malloc(sizeof(TreeNode));
    Node b = malloc(sizeof(TreeNode));
    Node c = malloc(sizeof(TreeNode));
    Node d = malloc(sizeof(TreeNode));
    Node e = malloc(sizeof(TreeNode));
    Node f = malloc(sizeof(TreeNode));
    a->element = 'A';
    b->element = 'B';
    c->element = 'C';
    d->element = 'D';
    e->element = 'E';
    f->element = 'F';

    a->left = b;
    a->right = c;
    b->left = d;
    b->right = e;
    c->right = f;
    c->left = NULL;
    d->left = d->right = NULL;
    e->left = e->right = NULL;
    f->left = f->right = NULL;
}
先序遍历

先序遍历是一种勇往直前的态度,走到哪就遍历到那里,先走左边再走右边,比如上面的这个图,首先会从根节点开始:从A开始,先左后右,那么下一个就是 B,然后继续走左边,左边为 D;现在 ABD 走完之后,B 的左边结束了,那么就要从 B 的右边开始了,因此下一个是 E;E 结束之后,现在 A 的左子树已经完全遍历完成了。然后就是 A 的右边,接着就是 C,C 没有左子树,直接走右边,最后输出 F;所以上面这个二叉树的前序遍历结果为:ABDECF。

先序遍历(preOrder)的操作过程如下:若二叉树为空,则什么也不做;否则

  1. 打印根节点
  2. 先序遍历左子树
  3. 先序遍历右子树

接下来就是编写实现先序遍历的函数了。我们传入的是根节点,根据先序遍历的特点,不难发现先序遍历中,根节点一直都是先沿着左子树“勇往直前”,直到走到了尽头,再走右子树,如此循环往复,递归函数就具有这个特点。当走到一个结点的时候,我们就打印对应的元素。那么如何结束这个递归函数呢?之前说过,递归函数有递归入口和终止条件,入口已经有了,那么终止条件是什么呢?二叉树走到尽头,即结点的左右孩子都为NULL,那就表示已经到头了,直接返回即可。

因此有了下面的函数:

void perOrder(Node root) {   //传入二叉树根节点
    if (root == NULL) return;	//终止条件
    printf("%c", root->element);
    perOrder(root->left);
    perOrder(root->right);
}

最后在main函数中调用即可

int main() {
  	//组装二叉树函数
  	//...
    perOrder(a);
}

树与二叉树(考研版)_第14张图片

那么先序遍历我们了解完了,接着就是中序遍历了,中序遍历在顺序上与先序遍历不同,先序遍历是走到哪就打印到哪,而中序遍历需要先完成整个左子树的遍历后再打印,然后再遍历其右子树

中序遍历

树与二叉树(考研版)_第15张图片

还是以上面的二叉树为例,首先需要先不断遍历左子树,走到最底部,但是沿途并不进行打印,而是到底之后,再打印,所以第一个打印的是D,接着由于没有右子树,所以我们回到B,此时再打印B,然后再去看B的右结点E,由于没有左子树和右子树了,所以直接打印E;左边遍历完成,接着回到A,打印A,然后对A的右子树重复上述操作。所以说遍历的基本规则还是一样的,只是打印值的时机发生了改变。

中序遍历(inOrder)的操作过程如下:若二叉树为空,则什么也不做;否则,

  1. 中序遍历左子树
  2. 打印结点
  3. 中序遍历右子树

所以这棵二叉树的中序遍历结果为:DBEACF,我们可以发现一个规律,就是在某个结点的左子树中所有结点,其中序遍历结果也是按照这样的规律排列的,比如A的左子树中所有结点,中序遍历结果中全部都在A的左边,右子树中所有的结点,全部都在A的右边(这个规律很关键,后面在做一些算法题时会用到)。对应的递归算法如下:

void inOrder(Node root) {
    if (root == NULL) return;
    inOrder(root->left);
    printf("%c", root->element);
    inOrder(root->right);
}

树与二叉树(考研版)_第16张图片

后序遍历

接着我们来看一下后序遍历,后序遍历继续将打印的时机延后,需要等待左右子树全部遍历完成,才会去进行打印

首先还是一路向左,到达结点D,此时结点D没有左子树了,接着看结点D还有没有右子树,发现也没有,左右子树全部遍历完成,那么此时再打印D,同样的,D完事之后就回到B了,此时接着看B的右子树,发现有结点E,重复上述操作,E结点没有左子树,也没有右子树,E也打印出来了;接着B的左右子树全部OK,那么再打印B,接着A的左子树就完事了,现在回到A,看到A的右子树,继续重复上述步骤,当A的右子树也遍历结束后,最后再打印A结点。

后序遍历(postOrder)的操作过程如下:若二叉树为空,则什么也不做;否则,

  1. 后序遍历左子树
  2. 后序遍历右子树
  3. 打印结点

所以最后的遍历顺序为:DEBFCA,不难发现,整棵二叉树(包括子树)根结点一定是在后面的,比如A在所有的结点的后面,B在其子节点D、E的后面,这一点恰恰和前序遍历相反(注意不是得到的结果相反,是规律相反)

void postOrder(Node root) {
    if (root == NULL) return;
    postOrder(root->left);
    postOrder(root->right);
    printf("%c", root->element);
}

树与二叉树(考研版)_第17张图片

三种遍历算法中,递归遍历左、右子树的顺序都是固定的,只是访问根节点的顺序不同。不管采用哪种遍历算法,每个结点都访问一次,且仅访问一次,故时间复杂度都是 O ( n ) O(n) O(n)。在递归遍历中,递归工作栈的栈深恰好为树的深度,所以在最坏的情况下,二叉树是有 n n n个结点且深度为 n n n的单支树,遍历算法的空间复杂度为 O ( n ) O(n) O(n)

层次遍历
树与二叉树(考研版)_第18张图片   层次遍历如左图所示,即按照箭头所指方向,按照1,2,3,4 的层次顺序,对二叉树中的各个结点进行访问。
   要进行层次遍历,需要借助一个 队列。首先将二叉树根节点入队,然后出队,访问出队结点。若它右左子树,则将左子树根节点入队;若它有右子树,则将右子树根节点入队。完成入队后出队,访问出队结点……如此反复,直到队列为空。

二叉树的层次遍历算法如下:

void levelOrder(TNode root) {
    Queue queue;
    initQueue(&queue);
    EnQueue(&queue, root);  //根节点入队
    while (!isEmpty(&queue)) {      //不断重复,直到队列为空为止
        TNode node = DeQueue(&queue);//出队元素,并打印
        printf("%c", node->element);
        if (node->left)             //如果存在左还在,入队
            EnQueue(&queue, node->left);
        if (node->right)            //如果存在右孩子,入队
            EnQueue(&queue, node->right);
    }
}

树与二叉树(考研版)_第19张图片

温故而知新,这里顺带复习了一下队列的相关内容,建议自己手写(或手敲)下列的所有内容,加以巩固练习。

#include 
#include 
#include 

typedef char E;
typedef struct TreeNode {
    E element;
    struct TreeNode *left, *right;
} TreeNode, *TNode;

typedef TNode T;
typedef struct QueueNode {
    T element;
    struct QueueNode *next;
} QueueNode, *QNode;

typedef struct Queue {
    QNode front, rear;
} Queue, *LinkedQueue;

bool initQueue(LinkedQueue queue) {
    QNode node = malloc(sizeof(QueueNode));
    if (node == NULL) return 0;
    queue->front = queue->rear = node;
    return 1;
}

bool EnQueue(LinkedQueue queue, T element) {
    QNode node = malloc(sizeof(QueueNode));
    if (node == NULL) return 0;
    node->element = element;
    queue->rear->next = node;
    queue->rear = node;
    return 1;
}

bool isEmpty(LinkedQueue queue) {
    return queue->front == queue->rear;
}

T DeQueue(LinkedQueue queue) {
    T e = queue->front->next->element;
    QNode node = queue->front->next;
    queue->front->next = queue->front->next->next;
    if (queue->rear == node)
        queue->rear = queue->front;
    free(node);
    return e;
}

void levelOrder(TNode root) {
    Queue queue;
    initQueue(&queue);
    EnQueue(&queue, root);  //根节点入队
    while (!isEmpty(&queue)) {      //不断重复,直到队列为空为止
        TNode node = DeQueue(&queue);//出队元素,并打印
        printf("%c", node->element);
        if (node->left)             //如果存在左还在,入队
            EnQueue(&queue, node->left);
        if (node->right)            //如果存在右孩子,入队
            EnQueue(&queue, node->right);
    }
}

int main() {
    TNode a = malloc(sizeof(TreeNode));
    TNode b = malloc(sizeof(TreeNode));
    TNode c = malloc(sizeof(TreeNode));
    TNode d = malloc(sizeof(TreeNode));
    TNode e = malloc(sizeof(TreeNode));
    TNode f = malloc(sizeof(TreeNode));
    a->element = 'A';
    b->element = 'B';
    c->element = 'C';
    d->element = 'D';
    e->element = 'E';
    f->element = 'F';

    a->left = b;
    a->right = c;
    b->left = d;
    b->right = e;
    c->right = f;
    c->left = NULL;
    d->left = d->right = NULL;
    e->left = e->right = NULL;
    f->left = f->right = NULL;

    levelOrder(a);
}

递归算法和非递归算法的转换

非递归的写法,需要使用循环,但是就比较麻烦了。我们需要使用栈来帮助我们完成(实际上递归写法本质上也是在利用栈),我们依然是从第一个结点开始,先走左边,每向下走一步,先输出节点的值,然后将对应的结点丢到栈中,当走到尽头时,表示左子树已经遍历完成,接着就是从栈中依次取出栈顶节点,如果栈顶结点有右子树,那么再按照同样的方式遍历其右子树,重复执行上述操作,直到栈清空为止。

  • 一路向左,不断入栈,直到尽头
  • 到达尽头后,出栈,看看有没有右子树,如果没有就继续出栈,直到遇到有右子树的为止
  • 拿到右子树后,从右子树开始,重复上述步骤,直到栈清空

比如我们还是以上面的这棵树为例:

树与二叉树(考研版)_第20张图片

首先我们需要自己创建栈和相对应的数据结构:

typedef char E;
typedef struct TreeNode {
    E element;
    struct TreeNode *left, *right;
} TreeNode, *TNode;

typedef TNode T;        //这里栈内元素类型定义为上面Node,也是二叉树结点指针
typedef struct StackNode {
    T element;
    struct StackNode *next;
} StackNode, *SNode;

//非递归操作
void initStack(SNode head) {
    head->next = NULL;
}

bool pushStack(SNode head, T element) {
    SNode node = malloc(sizeof(StackNode));
    if (node == NULL) return 0;
    node->element = element;
    node->next = head->next;
    head->next = node;
    return 1;
}

bool isEmpty(SNode head) {
    return head->next == NULL;
}

T popStack(SNode head) {
    SNode top = head->next;
    T e = head->next->element;
    head->next = head->next->next;
    free(top);
    return e;
}

创建完栈以后,接下来我们实现先序遍历的函数:

void perOrder(TNode root) {
    StackNode stack;
    initStack(&stack);
    while (root || !isEmpty(&stack)) {//栈为空且结点为 NULL 终止循环条件
        while (root) {//先不断遍历左子树,直到没有为止
            printf("%c", root->element);//打印当前结点元素值
            pushStack(&stack, root);//每经过一个结点,就将接待你放入栈中
            root = root->left;//继续遍历下一个左孩子结点
        }
        TNode node = popStack(&stack);//经过前面循环,左子树全部走完,接着走右子树
        root = node->right; //得到右孩子,重复上面的操作。
        // 如果没有右孩子,这里的 root 就被赋值为 NULL,下一轮循环直接跳过上面的 while,继续出站下一个结点找右子树
    }
}

注:在第一层 while 循环中调用isEmpty函数是因为防止到叶子结点的时候,其左右孩子都为空。当叶子结点的右孩子为空时,内层循环已经结束了,会调用外层的 while 循环,但是栈中可能还有其他元素,处于非空的状态。如果依然使用 root 判断,则会出错。

那么前序遍历我们了解完了,接着就是中序遍历了,中序遍历在顺序上与前序遍历不同,前序遍历是走到哪就打印到哪,而中序遍历需要先完成整个左子树的遍历后再打印,然后再遍历其右子树。

我们还是以上面的二叉树为例:首先需要先不断遍历左子树,走到最底部,但是沿途并不进行打印,而是到底之后,再打印,所以第一个打印的是D,接着由于没有右子树,所以我们回到B,此时再打印B,然后再去看B的右结点E,由于没有左子树和右子树了,所以直接打印E,左边遍历完成,接着回到A,打印A,然后对A的右子树重复上述操作。所以说遍历的基本规则还是一样的,只是打印值的时机发生了改变。

  1. 中序遍历左子树
  2. 打印结点
  3. 中序遍历右子树

所以这棵二叉树的中序遍历结果为:DBEACF,我们可以发现一个规律,就是在某个结点的左子树中所有结点,其中序遍历结果也是按照这样的规律排列的,比如A的左子树中所有结点,中序遍历结果中全部都在A的左边,右子树中所有的结点,全部都在A的右边(这个规律很关键,后面在做一些算法题时会用到)

void inOrder(TNode root){
    StackNode stack;
    initStack(&stack);
    while (root || !isEmpty(&stack)) {       //栈为空且结点为 NULL 终止循环条件
        while (root) {//先不断遍历左子树,直到没有为止
            pushStack(&stack, root);//每经过一个结点,就将接待你放入栈中
            root = root->left;//继续遍历下一个左孩子结点
        }
        TNode node = popStack(&stack);//经过前面循环,左子树全部走完,接着走右子树
        printf("%c", node->element);//打印当前结点元素值
        root = node->right; //得到右孩子,重复上面的操作。
        // 如果没有右孩子,这里的 root 就被赋值为 NULL,下一轮循环直接跳过上面的 while,继续出站下一个结点找右子树
    }
}

源代码
#include 
#include 
#include 

typedef char E;
typedef struct TreeNode {
    E element;
    struct TreeNode *left, *right;
} TreeNode, *TNode;

typedef TNode T;        //这里栈内元素类型定义为上面Node,也是二叉树结点指针
typedef struct StackNode {
    T element;
    struct StackNode *next;
} StackNode, *SNode;

//非递归操作
void initStack(SNode head) {
    head->next = NULL;
}

bool pushStack(SNode head, T element) {
    SNode node = malloc(sizeof(StackNode));
    if (node == NULL) return 0;
    node->element = element;
    node->next = head->next;
    head->next = node;
    return 1;
}

bool isEmpty(SNode head) {
    return head->next == NULL;
}

T popStack(SNode head) {
    SNode top = head->next;
    T e = head->next->element;
    head->next = head->next->next;
    free(top);
    return e;
}

void perOrder(TNode root) {
    StackNode stack;
    initStack(&stack);
    while (root || !isEmpty(&stack)) {       //栈为空且结点为 NULL 终止循环条件
        while (root) {          //先不断遍历左子树,直到没有为止
            printf("%c", root->element);    //打印当前结点元素值
            pushStack(&stack, root);    //每经过一个结点,就将接待你放入栈中
            root = root->left;      //继续遍历下一个左孩子结点
        }
        TNode node = popStack(&stack);    //经过前面循环,左子树全部走完,接着走右子树
        root = node->right; //得到右孩子,重复上面的操作。
        // 如果没有右孩子,这里的 root 就被赋值为 NULL,下一轮循环直接跳过上面的 while,继续出站下一个结点找右子树
    }
}

void inOrder(TNode root){
    StackNode stack;
    initStack(&stack);
    while (root || !isEmpty(&stack)) {//栈为空且结点为 NULL 终止循环条件
        while (root) {//先不断遍历左子树,直到没有为止
            pushStack(&stack, root);//每经过一个结点,就将接待你放入栈中
            root = root->left;//继续遍历下一个左孩子结点
        }
        TNode node = popStack(&stack);//经过前面循环,左子树全部走完,接着走右子树
        printf("%c", node->element);//打印当前结点元素值
        root = node->right; //得到右孩子,重复上面的操作。
        // 如果没有右孩子,这里的 root 就被赋值为 NULL,下一轮循环直接跳过上面的 while,继续出站下一个结点找右子树
    }
}

int main() {
    TNode a = malloc(sizeof(TreeNode));
    TNode b = malloc(sizeof(TreeNode));
    TNode c = malloc(sizeof(TreeNode));
    TNode d = malloc(sizeof(TreeNode));
    TNode e = malloc(sizeof(TreeNode));
    TNode f = malloc(sizeof(TreeNode));
    a->element = 'A';
    b->element = 'B';
    c->element = 'C';
    d->element = 'D';
    e->element = 'E';
    f->element = 'F';

    a->left = b;
    a->right = c;
    b->left = d;
    b->right = e;
    c->right = f;
    c->left = NULL;
    d->left = d->right = NULL;
    e->left = e->right = NULL;
    f->left = f->right = NULL;

    perOrder(a);
    printf("\n");
    inOrder(a);
}

树与二叉树(考研版)_第21张图片

注:源代码部分均可以运行,复制粘贴即可。

线索二叉树

目的:引入线索二叉树正是为了加快查找结点前驱和后继的速度

普通二叉树如何查找前驱和后继结点呢?

  1. 确定需要找到的结点p。
  2. 申请两个结点q和pre,首先q指向第一个结点,而pre指向null,然后遍历二叉树,q指向下一个结点(根据先序、中序和后续的顺序),pre指向q刚刚指向的结点。如此循环往复,直到q指向p
  3. 当p和q指针重合时,pre指向p的前驱结点。当pre和p指针重合时,q指向p的后继结点。

实质上还是二叉树的遍历。当一个操作中需要反复寻找某个结点的前驱或者后继时,这样的操作明显效率比较低。因此我们需要一种可以加快查找结点前驱和后继的速度的方法,从而引入了线索二叉树。

二叉链表

typedef int Element;
//二叉树的结点(链式存储)
typedef struct BiTNode {
    Element data;
    struct BiTNode *lchild, *rchild;
} BiTNode, *BiTNode;

线索链表

typedef int Element;
//线索二叉树结点
typedef struct ThreadNode {
    Element data;
    struct BiTNode *lchild, *rchild;
    int ltag, rtag;     //左、右线索标志
} ThreadNode, *ThreadTree;

tag == 0:表示指针指向孩子

Tag == 1:表示指针是“线索”

中序线索二叉树的存储

树与二叉树(考研版)_第22张图片

二叉树的线索化

王道教材版本

//中序线索化
void InThread(ThreadTree p, ThreadTree &pre){
    if(p != NULL){
        InThread(p->lchild, pre);     //递归,线索化左子树
        if(p->lchild == NULL){
            p->lchild = pre;
            p->ltag = 1;
        }
        if(pre != NULL && pre->rchild == NULL){
            pre->rchild = p;
            pre->rtag = 1;
        }
        pre = p;
        InThread(p->rchild, pre);
    }
}

//中序线索化二叉树T
void CreateInThread(ThreadTree T){
    ThreadTree pre = NULL;
    if(T != NULL){          //非空二叉树,线索化
        InThread(T, pre);     //线索二叉树
        pre->rchild = NULL; //处理遍历的最后一个结点
        pre->rtag = 1;
    }
}

课程版本

//中序线索化

typedef char Element;
//线索二叉树结点
typedef struct ThreadNode {
    Element data;
    struct ThreadNode *lchild, *rchild;
    int ltag, rtag;
} ThreadNode, *ThreadTree;

//全局变量 pre,指向当前访问结点的前驱
ThreadNode *pre = NULL;

void visit(ThreadNode *q) {
    if (q->lchild == NULL) { //左子树为空,建立前驱线索
        q->lchild = pre;
        q->ltag = 1;
    }
    if (pre != NULL && pre->rchild == NULL) {
        pre->rchild = q;    //建立前驱结点的后继线索
        pre->rtag = 1;
    }
    pre = q;
}

void  InThread(ThreadTree T){
    if(T != NULL){
        InThread(T->lchild);        //中序遍历左子树
        visit(T);                   //访问根结点
        InThread(T->rchild);        //中序遍历右子树
    }
}

void CreateInThread(ThreadTree T){
    pre = NULL;                 //pre初始为NULL
    if(T != NULL){              //非空二叉树才能线索化
        InThread(T);            //中序线索化二叉树
        if (pre->rchild == NULL){
            pre->rtag = 1;      //处理遍历的最后一个结点
        }
    }
}

线索二叉树 找前驱/后继

树和森林

树的存储

  1. 双亲表示法

    这种结构采用一组连续空间来存储每个结点,同时在每个结点中增设一个伪指针,指示其双亲结点在数组中的位置。

    树与二叉树(考研版)_第23张图片

    双亲表示法的存储结构描述如下:

    #define MAX_TREE_SIZE 100      //树中最多结点数
    typedef int element;
    
    typedef struct {        //树的结点定义
        element data;       //数据元素
        int parent;         //双亲位置域
    } PTNode;
    
    typedef struct {        //树的类型定义
        PTNode nodes[MAX_TREE_SIZE];    //双亲表示
        int n;                          //结点数
    } PTree;
    

    优点:可以很快地得每个结点的双亲结点。

    缺点:求结点的孩子时则需要遍历整个结构。

  2. 孩子表示法

    将每个结点的孩子结点都用单链表连接起来形成一个线性结构。

    树与二叉树(考研版)_第24张图片

    优点:寻找子女的操作非常直接。

    缺点:寻找双亲的操作需要遍历n个结点中孩子链表指针域所指向的n个孩子链表。

  3. 孩子兄弟表示法

    即以二叉链表作为树的存储结构

树与二叉树的应用

哈夫曼树和哈夫曼编码

定义:树中结点常常被赋予一个表示某种意义的数值,称为该结点的权。从树到热一结点的路径长度与该结点上权值的乘积,称为该结点的带权路径长度。树中所有叶结点的带权路径长度之和称为该树的带权路径长度,记为
W P L = ∑ i = 1 n w i l i WPL= \sum_{i=1}^{n} w_i l_i WPL=i=1nwili
其中, w i w_i wi表示第 i i i个叶结点所带的权值, l i l_i li是该叶结点到根结点的路径长度。

哈夫曼树构造的特点:

  1. 每个初始结点最终都成为叶结点,且权值越小的结点到根结点的路径长度越大。
  2. 构造过程中共新建了 n − 1 n-1 n1个结点(双分支结点),因此哈夫曼树的结点总数为 2 n − 1 2n-1 2n1
  3. 每次构造都选择 2 2 2棵树作为新结点的孩子,因此哈夫曼树中不存在度为 1 1 1的结点。

并查集

习题总结

⚠️判断完全二叉树 n 1 n_1 n1的值 ⇔ n \Leftrightarrow n n
n 0 + n 1 + n 2 = 总结点 n n 1 = 0 / 1 n 0 = n 2 + 1 n_0 + n_1 + n_2 = 总结点n\\ n_1 = 0/1\\ n_0 = n_2 + 1 n0+n1+n2=总结点nn1=0/1n0=n2+1
由完全二叉树的性质可知,度为 1 的结点要么只有一个,要么就没有。

结合 n 0 = n 2 + 1 n_0 = n_2 + 1 n0=n2+1公式可知:如果 n 0 n_0 n0为偶数 ⇒ n 2 \Rightarrow n_2 n2为奇数;如果 n 0 n_0 n0为奇数 ⇒ n 2 \Rightarrow n_2 n2为偶数;所以 n 0 + n 2 n_0 + n_2 n0+n2一定为奇数。

用上面解释可知: n = n 0 + n 1 + n 2 n = n_0 + n_1 + n_2 n=n0+n1+n2的奇偶性与 n 1 n_1 n1有关。然而 n 1 = 0 / 1 n_1 = 0/1 n1=0/1

如果 n 1 = 0 n_1 = 0 n1=0,那么 n n n为奇数;如果 n 1 = 1 n_1 = 1 n1=1,那么 n n n为偶数;反之如果 n n n为偶数,那么 n 1 = 1 n_1 = 1 n1=1;如果 n n n为奇数,那么 n 1 = 0 n_1 = 0 n1=0

e g : eg: eg:一棵完全二叉树上有 1001 个结点,其中叶结点的个数是 ( D ) (D) (D)

A . 250 A.250 A.250 B . 500 B.500 B.500 C . 254 C.254 C.254 D . 501 D.501 D.501

解: n = 1001 n = 1001 n=1001为奇数,则 n 1 = 0 n_1 = 0 n1=0,那么 n = n 0 + n 1 + n 2 = n 0 + n 2 = n 0 + ( n 0 − 1 ) = 2 n 0 − 1 = 1001 n = n_0 + n_1 + n_2 = n_0 + n_2 = n_0 + (n_0 - 1) = 2n_0 - 1 = 1001 n=n0+n1+n2=n0+n2=n0+(n01)=2n01=1001,解得 n = 501 n = 501 n=501

e g : eg: eg:【2016年全国试题】若森林F有15条边、25个结点,则F包含树的个数是 ( C ) (C) C

A . 8 A.8 A.8 B . 9 B.9 B.9 C . 10 C.10 C.10 D . 11 D.11 D.11

解:树的结点数n,边数(分支数)B有确定的关系 n = B + 1 n = B + 1 n=B+1,森林是不相交的树的集合,则森林的结点数 F n = ∑ T i = ∑ ( B i + 1 ) F_n = \sum T_i = \sum(B_i + 1) Fn=Ti=(Bi+1),其中 T i T_i Ti就是森林中第 i i i棵树的结点数, B I B_I BI是森林中第 i i i棵树的分支。设森林中有 m m m棵树,则 F n = ∑ B i + m F_n = \sum B_i + m Fn=Bi+m,即 25 = 15 + m 25 = 15 + m 25=15+m,即森林中有10棵树。

你可能感兴趣的:(C语言,数据结构与算法,1024程序员节)