iOS底层-cache_t分析

在之前我们已经分析过类的结构了,也具体分析过其中的isa、bits,现在我要开始分析一下cache:缓存


pic0

cache 的主要作用是存储类的方法,只有调用后才会缓存哦,并不是一开始加载就缓存的

@interface MCPerson : NSObject
{
    NSString *nickName;
}
@property (nonatomic,copy) NSString *name;
-(void)say1;
-(void)say2;
-(void)say3;
-(void)say4;
-(void)say5;
-(void)say6;
-(void)say7;
-(void)say8;
-(void)say9;
-(void)say10;
-(void)say11;
-(void)say12;
@end

@implementation MCPerson
-(void)say1{
    NSLog(@"%s",__func__);
}
-(void)say2{
    NSLog(@"%s",__func__);
}
-(void)say3{
    NSLog(@"%s",__func__);
}
-(void)say4{
    NSLog(@"%s",__func__);
}
-(void)say5{
    NSLog(@"%s",__func__);
}
-(void)say6{
    NSLog(@"%s",__func__);
}
-(void)say7{
    NSLog(@"%s",__func__);
}
-(void)say8{
    NSLog(@"%s",__func__);
}
-(void)say9{
    NSLog(@"%s",__func__);
}
-(void)say10{
    NSLog(@"%s",__func__);
}
-(void)say11{
    NSLog(@"%s",__func__);
}
-(void)say12{
    NSLog(@"%s",__func__);
}
@end

开始断点调试


pic2

当第一个方法都没调用的时候断住

(lldb) p/x MCPerson.class
(Class) $0 = 0x00000001000034c8 MCPerson
(lldb) p (cache_t*)0x00000001000034d8 //内存偏移16个字节,取出cache
(cache_t *) $1 = 0x00000001000034d8
(lldb) p *$1
(cache_t) $2 = {
  _buckets = {
    std::__1::atomic = 0x000000010032e440 {
      _sel = {
        std::__1::atomic = (null)
      }
      _imp = {
        std::__1::atomic = 0
      }
    }
  }
  _mask = {
    std::__1::atomic = 0//分配空间为0
  }
  _flags = 32804
  _occupied = 0 //数量0
}

当第一个方法调用后断住

2020-09-18 02:51:45.097235+0800 KCObjc[42706:2137752] -[MCPerson say1]
(lldb) p *$1
(cache_t) $3 = {
  _buckets = {
    std::__1::atomic = 0x0000000102900350 {
      _sel = {
        std::__1::atomic = ""
      }
      _imp = {
        std::__1::atomic = 8376
      }
    }
  }
  _mask = {
    std::__1::atomic = 3//开辟空间为3
  }
  _flags = 32804
  _occupied = 1//数量为1
}
(lldb) 

打印缓存的方法,注意,这里的buckets()是返回数组的第一个元素,如果要第二个元素可以p $3.buckets()[1]

(lldb) p $3.buckets()
(bucket_t *) $4 = 0x0000000102900350
(lldb) p *$4
(bucket_t) $5 = {
  _sel = {
    std::__1::atomic = ""
  }
  _imp = {
    std::__1::atomic = 8376
  }
}
(lldb) p $5.sel()
(SEL) $6 = "say1"

这里说明的确方法调用后会缓存到cache中来

接下来再次调用余下的方法,直到最后一个方法

(lldb) p *$1
(cache_t) $8 = {
  _buckets = {
    std::__1::atomic = 0x00000001006489e0 {
      _sel = {
        std::__1::atomic = (null)
      }
      _imp = {
        std::__1::atomic = 0
      }
    }
  }
  _mask = {
    std::__1::atomic = 15//开辟的空间
  }
  _flags = 32804
  _occupied = 5//数量
}

如果一个一个断点慢慢走,会发现_occupied会不断重置然后递增,_mask的值也再不断增加,所以我们来看一下源码,了解一下其中的逻辑

ALWAYS_INLINE
void cache_t::insert(Class cls, SEL sel, IMP imp, id receiver)
{
#if CONFIG_USE_CACHE_LOCK
    cacheUpdateLock.assertLocked();
#else
    runtimeLock.assertLocked();
#endif

    ASSERT(sel != 0 && cls->isInitialized());

    // Use the cache as-is if it is less than 3/4 full
    mask_t newOccupied = occupied() + 1;
    unsigned oldCapacity = capacity(), capacity = oldCapacity;
//    如果缓存为空,初始化capacity大小为4,occupied为1,mask_t = capacity -1
//     or
//     newOccupied + 1 <= 容量 /4 * 3 的时候不管
//     or
//     _occupied 重置为0 capacity = capacity * 2
    if (slowpath(isConstantEmptyCache())) {
        // Cache is read-only. Replace it.
        if (!capacity) capacity = INIT_CACHE_SIZE;
        reallocate(oldCapacity, capacity, /* freeOld */false);
    }
    else if (fastpath(newOccupied + CACHE_END_MARKER <= capacity / 4 * 3)) {
        // Cache is less than 3/4 full. Use it as-is.
    }
    else {
        capacity = capacity ? capacity * 2 : INIT_CACHE_SIZE;
        if (capacity > MAX_CACHE_SIZE) {
            capacity = MAX_CACHE_SIZE;
        }
//调用这个方法后会重置_occupied、_mask
        reallocate(oldCapacity, capacity, true);
    }

    bucket_t *b = buckets();
    mask_t m = capacity - 1;
    mask_t begin = cache_hash(sel, m);
    mask_t i = begin;

    // Scan for the first unused slot and insert there.
    // There is guaranteed to be an empty slot because the
    // minimum size is 4 and we resized at 3/4 full.
        do {
 // 如果该次序没有值则缓存进去;
//如果已缓存则打断缓存过程;
//否则在列表中按照次序寻找下一个可缓存的次序只到缓存成功
        if (fastpath(b[i].sel() == 0)) {
            incrementOccupied(); // 在这里增长_occupied,标识有新的方法被缓存了
            b[i].set(sel, imp, cls);// 插入缓存
            return;
        }
        if (b[i].sel() == sel) {
            // The entry was added to the cache by some other thread
            // before we grabbed the cacheUpdateLock.
            return; // 如果已缓存则打断缓存过程
        }
    } while (fastpath((i = cache_next(i, m)) != begin));

    cache_t::bad_cache(receiver, (SEL)sel, cls);// 缓存发生意外
}

ALWAYS_INLINE
void cache_t::reallocate(mask_t oldCapacity, mask_t newCapacity, bool freeOld)
{
    bucket_t *oldBuckets = buckets();
    bucket_t *newBuckets = allocateBuckets(newCapacity);

    // Cache's old contents are not propagated. 
    // This is thought to save cache memory at the cost of extra cache fills.
    // fixme re-measure this

    ASSERT(newCapacity > 0);
    ASSERT((uintptr_t)(mask_t)(newCapacity-1) == newCapacity-1);
//调用这个方法后,_occupied会被重置
    setBucketsAndMask(newBuckets, newCapacity - 1);
    
    if (freeOld) {
        cache_collect_free(oldBuckets, oldCapacity);
    }
}

#if CACHE_MASK_STORAGE == CACHE_MASK_STORAGE_OUTLINED

void cache_t::setBucketsAndMask(struct bucket_t *newBuckets, mask_t newMask)
{
    // objc_msgSend uses mask and buckets with no locks.
    // It is safe for objc_msgSend to see new buckets but old mask.
    // (It will get a cache miss but not overrun the buckets' bounds).
    // It is unsafe for objc_msgSend to see old buckets and new mask.
    // Therefore we write new buckets, wait a lot, then write new mask.
    // objc_msgSend reads mask first, then buckets.

#ifdef __arm__
    // ensure other threads see buckets contents before buckets pointer
    mega_barrier();

    _buckets.store(newBuckets, memory_order::memory_order_relaxed);
    
    // ensure other threads see new buckets before new mask
    mega_barrier();
    
    _mask.store(newMask, memory_order::memory_order_relaxed);
    _occupied = 0;//重置为0
#elif __x86_64__ || i386
    // ensure other threads see buckets contents before buckets pointer
    _buckets.store(newBuckets, memory_order::memory_order_release);
    
    // ensure other threads see new buckets before new mask
    _mask.store(newMask, memory_order::memory_order_release);
    _occupied = 0;//重置为0
#else
#error Don't know how to do setBucketsAndMask on this architecture.
#endif
}

总结:

  • 对象缓存是放在类的缓存列表中的。
  • 缓存列表本来为空,只有当第一次调用对象某一个实例时才会分配给一个缓存空间。
  • 缓存空间容量是弹性的,当容量达到一定程度时,- 缓存空间会重新分配,此时列表也会被清空。
  • 缓存列表中的方法缓存时乱序的,和缓存顺序及方法在类中的顺序无关。(当全部方法调用完后,从buckets数组中取,很多方法无法取出,而且是乱序的)
  • _occupied代表此时混存列表中已缓存方法的数量,每次都会重置;这里有疑问,下次继续深入了解,这个字段代表的含义
  • _mask和容量大小相关。

你可能感兴趣的:(iOS底层-cache_t分析)