尚硅谷大数据项目《在线教育之实时数仓》笔记003

视频地址:尚硅谷大数据项目《在线教育之实时数仓》_哔哩哔哩_bilibili

目录

第7章 数仓开发之ODS层

P015

第8章 数仓开发之DIM层

P016

P017

P018

P019

01、node001节点Linux命令

02、KafkaUtil.java

03、DimSinkApp.java

P020

P021

P022

P023


第7章 数仓开发之ODS层

P015

采集到 Kafka 的 topic_log 和 topic_db 主题的数据即为实时数仓的 ODS 层,这一层的作用是对数据做原样展示和备份。

第8章 数仓开发之DIM层

P016

8.1.1 Flink CDC

P017

8.2 主要任务

尚硅谷大数据项目《在线教育之实时数仓》笔记003_第1张图片

package com.atguigu.edu.realtime.app.dim;

import com.atguigu.edu.realtime.util.EnvUtil;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

public class DimSinkApp {
    public static void main(String[] args) {
        //TODO 1 创建flink运行环境以及设置状态后端
        StreamExecutionEnvironment env = EnvUtil.getExecutionEnvironment(1);

        // TODO 2 读取主流kafka数据
        //env.fromSource();

        // TODO 3 对主流数据进行ETL

        // TODO 4 使用flinkCDC读取配置表数据

        // TODO 5 将配置表数据创建为广播流

        // TODO 6 合并主流和广播流

        // TODO 7 对合并流进行分别处理

        // TODO 8 调取维度数据写出到phoenix

        // TODO 9 执行flink任务

    }
}
package com.atguigu.edu.realtime.util;

import org.apache.flink.api.common.restartstrategy.RestartStrategies;
import org.apache.flink.api.common.time.Time;
import org.apache.flink.runtime.state.hashmap.HashMapStateBackend;
import org.apache.flink.streaming.api.CheckpointingMode;
import org.apache.flink.streaming.api.environment.CheckpointConfig;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

public class EnvUtil {
    /**
     * 环境准备及状态后端设置,获取对应的环境
     *
     * @param parallelism Flink 程序的并行度
     * @return Flink 流处理环境对象
     */
    public static StreamExecutionEnvironment getExecutionEnvironment(Integer parallelism) {
        //TODO 1 环境创建准备
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        //设置并发
        env.setParallelism(parallelism);

        //TODO 2 设置状态后端
        env.enableCheckpointing(3000L, CheckpointingMode.EXACTLY_ONCE);
        //设置超时时间
        env.getCheckpointConfig().setCheckpointTimeout(60 * 1000L);
        //设置最小间隔时间
        env.getCheckpointConfig().setMinPauseBetweenCheckpoints(3000L);
        env.getCheckpointConfig().setExternalizedCheckpointCleanup(
                CheckpointConfig.ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION
        );

        env.setRestartStrategy(RestartStrategies.failureRateRestart(
                3, Time.days(1), Time.minutes(1)
        ));
        env.setStateBackend(new HashMapStateBackend());
        env.getCheckpointConfig().setCheckpointStorage("hdfs://node001:8020/edu/ck");
        System.setProperty("HADOOP_USER_NAME", "atguigu");
        return env;
    }
}

P018

package com.atguigu.edu.realtime.util;

import org.apache.flink.api.common.serialization.DeserializationSchema;
import org.apache.flink.api.common.typeinfo.BasicTypeInfo;
import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.flink.connector.kafka.source.KafkaSource;
import org.apache.flink.connector.kafka.source.enumerator.initializer.OffsetsInitializer;
import org.apache.kafka.clients.consumer.OffsetResetStrategy;

import java.io.IOException;

public class KafkaUtil {
    public static KafkaSource getKafkaConsumer(String topic, String groupId) {
        return KafkaSource.builder()
                // 必要参数
//                .setBootstrapServers(EduConfig.KAFKA_BOOTSTRAPS)//“node001:9092”
                .setTopics(topic)
                .setGroupId(groupId)
                .setValueOnlyDeserializer(new DeserializationSchema() {
                    @Override
                    public String deserialize(byte[] message) throws IOException {
                        if (message != null && message.length != 0) {
                            return new String(message);
                        }
                        return null;
                    }

                    @Override
                    public boolean isEndOfStream(String nextElement) {
                        return false;
                    }

                    @Override
                    public TypeInformation getProducedType() {
                        return BasicTypeInfo.STRING_TYPE_INFO;
                    }
                })
                // 不必要的参数,设置offset重置的时候读取数据的位置
                .setStartingOffsets(OffsetsInitializer.committedOffsets(OffsetResetStrategy.EARLIEST))
                .build();
    }
}

P019

尚硅谷大数据项目《在线教育之实时数仓》笔记003_第2张图片

01、node001节点Linux命令
[atguigu@node001 bin]$ jpsall
================ node001 ================
4803 QuorumPeerMain
5236 Kafka
7941 Maxwell
5350 Application
6726 ConsoleConsumer
4458 NodeManager
8810 Jps
4043 DataNode
3869 NameNode
4654 JobHistoryServer
================ node002 ================
3505 ResourceManager
4066 QuorumPeerMain
4490 Kafka
5179 Jps
3660 NodeManager
3263 DataNode
================ node003 ================
3505 SecondaryNameNode
5777 Jps
4369 Application
4279 Kafka
4569 Application
3354 DataNode
3851 QuorumPeerMain
3659 NodeManager
[atguigu@node001 bin]$ 

启动hadoop、maxwell、kafka。

[atguigu@node001 ~]$ kafka-console-consumer.sh --bootstrap-server node001:9092 --topic topic_db

[atguigu@node001 bin]$ mysql_to_kafka_init.sh all

02、KafkaUtil.java
package com.atguigu.edu.realtime.util;

import org.apache.flink.api.common.serialization.DeserializationSchema;
import org.apache.flink.api.common.typeinfo.BasicTypeInfo;
import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.flink.connector.kafka.source.KafkaSource;
import org.apache.flink.connector.kafka.source.enumerator.initializer.OffsetsInitializer;
import org.apache.kafka.clients.consumer.OffsetResetStrategy;

import java.io.IOException;

public class KafkaUtil {
    public static KafkaSource getKafkaConsumer(String topic, String groupId) {
        return KafkaSource.builder()
                // 必要参数
                .setBootstrapServers("node001:9092")
                .setTopics(topic)
                .setGroupId(groupId)
                .setValueOnlyDeserializer(new DeserializationSchema() {
                    @Override
                    public String deserialize(byte[] message) throws IOException {
                        if (message != null && message.length != 0) {
                            return new String(message);
                        }
                        return null;
                    }

                    @Override
                    public boolean isEndOfStream(String nextElement) {
                        return false;
                    }

                    @Override
                    public TypeInformation getProducedType() {
                        return BasicTypeInfo.STRING_TYPE_INFO;
                    }
                })
                // 不必要的参数,设置offset重置的时候读取数据的位置
                .setStartingOffsets(OffsetsInitializer.committedOffsets(OffsetResetStrategy.EARLIEST))
                .build();
    }
}
03、DimSinkApp.java
package com.atguigu.edu.realtime.app.dim;

import com.alibaba.fastjson.JSON;
import com.alibaba.fastjson.JSONObject;
import com.atguigu.edu.realtime.util.EnvUtil;
import com.atguigu.edu.realtime.util.KafkaUtil;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.functions.FilterFunction;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;

public class DimSinkApp {
    public static void main(String[] args) throws Exception {
        //TODO 1 创建flink运行环境以及设置状态后端
        StreamExecutionEnvironment env = EnvUtil.getExecutionEnvironment(1);

        // TODO 2 读取主流kafka数据
        DataStreamSource eduDS = env.fromSource(KafkaUtil.getKafkaConsumer("topic_db", "dim_sink_app"),
                WatermarkStrategy.noWatermarks(),
                "kafka_source");

        // TODO 3 对主流数据进行ETL
//        eduDS.map(new MapFunction() {
//            @Override
//            public JSONObject map(String value) throws Exception {
//                return JSONObject.parseObject(value);
//            }
//        }).filter(new FilterFunction() {
//            @Override
//            public boolean filter(JSONObject jsonObject) throws Exception {
//                String type = jsonObject.getString("type");
//                if (type.equals("bootstrap-complete") || type.equals("bootstrap-start")) {
//                    return false;
//                }
//                return true;
//            }
//        });
        SingleOutputStreamOperator jsonDS = eduDS.flatMap(new FlatMapFunction() {
            @Override
            public void flatMap(String value, Collector out) throws Exception {
                try {
                    JSONObject jsonObject = JSON.parseObject(value);
                    String type = jsonObject.getString("type");
                    if (!(type.equals("bootstrap-complete") || type.equals("bootstrap-start"))) {
                        // 需要的数据
                        out.collect(jsonObject);
                    }
                } catch (Exception e) {
                    e.printStackTrace();
                    System.out.println("数据转换json错误...");
                }
            }
        });
        jsonDS.print();

        // TODO 4 使用flinkCDC读取配置表数据


        // TODO 5 将配置表数据创建为广播流


        // TODO 6 合并主流和广播流


        // TODO 7 对合并流进行分别处理


        // TODO 8 调取维度数据写出到phoenix


        // TODO 9 执行flink任务
        env.execute();
    }
}

P020

flinkCDC监控mysql中的binlog。

尚硅谷大数据项目《在线教育之实时数仓》笔记003_第3张图片

尚硅谷大数据项目《在线教育之实时数仓》笔记003_第4张图片

{"before":null,"after":{"source_table":"base_category_info","sink_table":"dim_base_category_info","sink_columns":"id,category_name,create_time,update_time,deleted","sink_pk":"id","sink_extend":null},"source":{"version":"1.6.4.Final","connector":"mysql","name":"mysql_binlog_source","ts_ms":0,"snapshot":"false","db":"edu_config","sequence":null,"table":"table_process","server_id":0,"gtid":null,"file":"","pos":0,"row":0,"thread":null,"query":null},"op":"r","ts_ms":1695262804254,"transaction":null}
{
    "before":null,
    "after":{
        "source_table":"base_category_info",
        "sink_table":"dim_base_category_info",
        "sink_columns":"id,category_name,create_time,update_time,deleted",
        "sink_pk":"id",
        "sink_extend":null
    },
    "source":{
        "version":"1.6.4.Final",
        "connector":"mysql",
        "name":"mysql_binlog_source",
        "ts_ms":0,
        "snapshot":"false",
        "db":"edu_config",
        "sequence":null,
        "table":"table_process",
        "server_id":0,
        "gtid":null,
        "file":"",
        "pos":0,
        "row":0,
        "thread":null,
        "query":null
    },
    "op":"r",
    "ts_ms":1695262804254,
    "transaction":null
}
package com.atguigu.edu.realtime.app.dim;

import com.alibaba.fastjson.JSON;
import com.alibaba.fastjson.JSONObject;
import com.atguigu.edu.realtime.bean.DimTableProcess;
import com.atguigu.edu.realtime.util.EnvUtil;
import com.atguigu.edu.realtime.util.KafkaUtil;
import com.ververica.cdc.connectors.mysql.source.MySqlSource;
import com.ververica.cdc.connectors.mysql.table.StartupOptions;
import com.ververica.cdc.debezium.JsonDebeziumDeserializationSchema;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.functions.FilterFunction;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.state.MapStateDescriptor;
import org.apache.flink.streaming.api.datastream.BroadcastConnectedStream;
import org.apache.flink.streaming.api.datastream.BroadcastStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;

public class DimSinkApp {
    public static void main(String[] args) throws Exception {
        //TODO 1 创建flink运行环境以及设置状态后端
        StreamExecutionEnvironment env = EnvUtil.getExecutionEnvironment(1);

        // TODO 2 读取主流kafka数据
        DataStreamSource eduDS = env.fromSource(KafkaUtil.getKafkaConsumer("topic_db", "dim_sink_app"),
                WatermarkStrategy.noWatermarks(),
                "kafka_source");

        // TODO 3 对主流数据进行ETL
//        eduDS.map(new MapFunction() {
//            @Override
//            public JSONObject map(String value) throws Exception {
//                return JSONObject.parseObject(value);
//            }
//        }).filter(new FilterFunction() {
//            @Override
//            public boolean filter(JSONObject jsonObject) throws Exception {
//                String type = jsonObject.getString("type");
//                if (type.equals("bootstrap-complete") || type.equals("bootstrap-start")) {
//                    return false;
//                }
//                return true;
//            }
//        });
        SingleOutputStreamOperator jsonDS = eduDS.flatMap(new FlatMapFunction() {
            @Override
            public void flatMap(String value, Collector out) throws Exception {
                try {
                    JSONObject jsonObject = JSON.parseObject(value);
                    String type = jsonObject.getString("type");
                    if (!(type.equals("bootstrap-complete") || type.equals("bootstrap-start"))) {
                        // 需要的数据
                        out.collect(jsonObject);
                    }
                } catch (Exception e) {
                    e.printStackTrace();
                    System.out.println("数据转换json错误...");
                }
            }
        });
        // jsonDS.print();

        // TODO 4 使用flinkCDC读取配置表数据
        // 4.1 FlinkCDC 读取配置表信息
        MySqlSource mySqlSource = MySqlSource.builder()
                .hostname("node001")
                .port(3306)
                .databaseList("edu_config") // set captured database
                .tableList("edu_config.table_process") // set captured table
                .username("root")
                .password("123456")
                //定义读取数据的格式
                .deserializer(new JsonDebeziumDeserializationSchema()) // converts SourceRecord to JSON String
                //设置读取数据的模式
                .startupOptions(StartupOptions.initial())
                .build();

        // 4.2 封装为流
        DataStreamSource configDS = env.fromSource(mySqlSource, WatermarkStrategy.noWatermarks(), "mysql_source");
        configDS.print();

        // TODO 5 将配置表数据创建为广播流

        // TODO 6 连接流,合并主流和广播流

        // TODO 7 对合并流进行分别处理

        // TODO 8 调取维度数据写出到phoenix

        // TODO 9 执行flink任务
        env.execute();
    }
}

P021

package com.atguigu.edu.realtime.app.dim;

import com.alibaba.fastjson.JSON;
import com.alibaba.fastjson.JSONObject;
import com.atguigu.edu.realtime.bean.DimTableProcess;
import com.atguigu.edu.realtime.util.EnvUtil;
import com.atguigu.edu.realtime.util.KafkaUtil;
import com.ververica.cdc.connectors.mysql.source.MySqlSource;
import com.ververica.cdc.connectors.mysql.table.StartupOptions;
import com.ververica.cdc.debezium.JsonDebeziumDeserializationSchema;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.functions.FilterFunction;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.state.MapStateDescriptor;
import org.apache.flink.streaming.api.datastream.BroadcastConnectedStream;
import org.apache.flink.streaming.api.datastream.BroadcastStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.co.BroadcastProcessFunction;
import org.apache.flink.util.Collector;

public class DimSinkApp {
    public static void main(String[] args) throws Exception {
        //TODO 1 创建flink运行环境以及设置状态后端
        StreamExecutionEnvironment env = EnvUtil.getExecutionEnvironment(1);

        // TODO 2 读取主流kafka数据
        DataStreamSource eduDS = env.fromSource(KafkaUtil.getKafkaConsumer("topic_db", "dim_sink_app"),
                WatermarkStrategy.noWatermarks(),
                "kafka_source");

        // TODO 3 对主流数据进行ETL
//        eduDS.map(new MapFunction() {
//            @Override
//            public JSONObject map(String value) throws Exception {
//                return JSONObject.parseObject(value);
//            }
//        }).filter(new FilterFunction() {
//            @Override
//            public boolean filter(JSONObject jsonObject) throws Exception {
//                String type = jsonObject.getString("type");
//                if (type.equals("bootstrap-complete") || type.equals("bootstrap-start")) {
//                    return false;
//                }
//                return true;
//            }
//        });
        SingleOutputStreamOperator jsonDS = eduDS.flatMap(new FlatMapFunction() {
            @Override
            public void flatMap(String value, Collector out) throws Exception {
                try {
                    JSONObject jsonObject = JSON.parseObject(value);
                    String type = jsonObject.getString("type");
                    if (!(type.equals("bootstrap-complete") || type.equals("bootstrap-start"))) {
                        // 需要的数据
                        out.collect(jsonObject);
                    }
                } catch (Exception e) {
                    e.printStackTrace();
                    System.out.println("数据转换json错误...");
                }
            }
        });
        // jsonDS.print();

        // TODO 4 使用flinkCDC读取配置表数据
        // 4.1 FlinkCDC 读取配置表信息
        MySqlSource mySqlSource = MySqlSource.builder()
                .hostname("node001")
                .port(3306)
                .databaseList("edu_config") // set captured database
                .tableList("edu_config.table_process") // set captured table
                .username("root")
                .password("123456")
                //定义读取数据的格式
                .deserializer(new JsonDebeziumDeserializationSchema()) // converts SourceRecord to JSON String
                //设置读取数据的模式
                .startupOptions(StartupOptions.initial())
                .build();

        // 4.2 封装为流
        DataStreamSource configDS = env.fromSource(mySqlSource, WatermarkStrategy.noWatermarks(), "mysql_source");
        configDS.print();

        // TODO 5 将配置表数据创建为广播流
        // key-> 维度表名称,value-> mysql单行数据 使用javaBean
        MapStateDescriptor tableProcessState = new MapStateDescriptor<>("table_process_state", String.class, DimTableProcess.class);
        BroadcastStream broadcastStream = configDS.broadcast(tableProcessState);

        // TODO 6 连接流,合并主流和广播流
        BroadcastConnectedStream connectCS = jsonDS.connect(broadcastStream);

        // TODO 7 对合并流进行分别处理
        connectCS.process(new BroadcastProcessFunction() {
            //处理主流
            @Override
            public void processElement(JSONObject jsonObject, BroadcastProcessFunction.ReadOnlyContext readOnlyContext, Collector collector) throws Exception {
            }

            //处理广播流
            @Override
            public void processBroadcastElement(String s, BroadcastProcessFunction.Context context, Collector collector) throws Exception {
            }
        });

        // TODO 8 调取维度数据写出到phoenix

        // TODO 9 执行flink任务
        env.execute();
    }
} 
  

P022

package com.atguigu.edu.realtime.app.func;

import com.alibaba.druid.pool.DruidDataSource;
import com.alibaba.druid.pool.DruidPooledConnection;
import com.alibaba.fastjson.JSON;
import com.alibaba.fastjson.JSONObject;
import com.atguigu.edu.realtime.bean.DimTableProcess;
import com.atguigu.edu.realtime.common.EduConfig;
import com.atguigu.edu.realtime.util.DruidDSUtil;
import com.atguigu.edu.realtime.util.PhoenixUtil;
import org.apache.flink.api.common.state.BroadcastState;
import org.apache.flink.api.common.state.MapStateDescriptor;
import org.apache.flink.api.common.state.ReadOnlyBroadcastState;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.functions.co.BroadcastProcessFunction;
import org.apache.flink.util.Collector;

import java.sql.*;
import java.util.*;

public class DimBroadcastProcessFunction extends BroadcastProcessFunction {
    private MapStateDescriptor tableProcessState;

    // 初始化配置表数据
    private HashMap configMap = new HashMap<>();

    public DimBroadcastProcessFunction(MapStateDescriptor tableProcessState) {
        this.tableProcessState = tableProcessState;
    }

    /**
     * @param value flinkCDC直接输入的json
     * @param ctx
     * @param out
     * @throws Exception
     */
    @Override
    public void processBroadcastElement(String value, Context ctx, Collector out) throws Exception {
        //TODO 1 获取配置表数据解析格式

        //TODO 2 检查phoenix中是否存在表 不存在创建

        //TODO 3 将数据写入到状态 广播出去
    }

    /**
     * @param value kafka中maxwell生成的json数据
     * @param ctx
     * @param out
     * @throws Exception
     */
    @Override
    public void processElement(JSONObject value, ReadOnlyContext ctx, Collector out) throws Exception {
        //TODO 1 获取广播的配置数据

        //TODO 2 过滤出需要的维度字段

        //TODO 3 补充输出字段
    }
}

P023

    //package com.atguigu.edu.realtime.app.func;DimBroadcastProcessFunction
    @Override
    public void open(Configuration parameters) throws Exception {
        super.open(parameters);

        Connection connection = DriverManager.getConnection("jdbc:mysql://node001:3306/edu_config?" +
                "user=root&password=123456&useUnicode=true&" +
                "characterEncoding=utf8&serverTimeZone=Asia/Shanghai&useSSL=false"
        );

        PreparedStatement preparedStatement = connection.prepareStatement("select * from edu_config.table_process");
        ResultSet resultSet = preparedStatement.executeQuery();
        ResultSetMetaData metaData = resultSet.getMetaData();
        while (resultSet.next()) {
            JSONObject jsonObject = new JSONObject();
            for (int i = 1; i <= metaData.getColumnCount(); i++) {
                String columnName = metaData.getColumnName(i);
                String columnValue = resultSet.getString(i);
                jsonObject.put(columnName, columnValue);
            }
            DimTableProcess dimTableProcess = jsonObject.toJavaObject(DimTableProcess.class);
            configMap.put(dimTableProcess.getSourceTable(), dimTableProcess);
        }
        resultSet.close();
        preparedStatement.close();
        connection.close();
    }

你可能感兴趣的:(#,大数据数仓,大数据,实时数仓,flink,1024程序员节)