提前安装好 CUDA 和 CUDNN,登录 NVIDIA 官方网站下载和主机 CUDA 版本适配的 TensorRT 压缩包即可。
以 CUDA 版本是 10.2 为例,选择适配 CUDA 10.2 的 tar 包,然后执行类似如下的命令安装并测试:
#安装c++版本
cd /the/path/of/tensorrt/tar/gz/file
tar -zxvf TensorRT-8.2.5.1.linux.x86_64-gnu.cuda-10.2.cudnn8.2.tar.gz
export TENSORRT_DIR=$(pwd)/TensorRT-8.2.5.1
export LD_LIBRARY_PATH=$TENSORRT_DIR/lib:$LD_LIBRARY_PATH
#安装python版本
pip install TensorRT-8.2.5.1/python/tensorrt-8.2.5.1-cp37-none-linux_x86_64.whl
python -c "import tensorrt;print(tensorrt.__version__)" #打印8.2.5.1,则说明安装成功
import tensorrt as trt
verbose = True
IN_NAME = 'input'
OUT_NAME = 'output'
IN_H = 224
IN_W = 224
BATCH_SIZE = 1
EXPLICIT_BATCH = 1 << (int)(
trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
TRT_LOGGER = trt.Logger(trt.Logger.VERBOSE) if verbose else trt.Logger()
with trt.Builder(TRT_LOGGER) as builder, builder.create_builder_config(
) as config, builder.create_network(EXPLICIT_BATCH) as network:
# define network
input_tensor = network.add_input(
name=IN_NAME, dtype=trt.float32, shape=(BATCH_SIZE, 3, IN_H, IN_W))
pool = network.add_pooling(
input=input_tensor, type=trt.PoolingType.MAX, window_size=(2, 2))
pool.stride = (2, 2)
pool.get_output(0).name = OUT_NAME
network.mark_output(pool.get_output(0))
# serialize the model to engine file
profile = builder.create_optimization_profile()
profile.set_shape_input('input', *[[BATCH_SIZE, 3, IN_H, IN_W]]*3)
builder.max_batch_size = 1
config.max_workspace_size = 1 << 30
engine = builder.build_engine(network, config)
with open('model_python_trt.engine', mode='wb') as f:
f.write(bytearray(engine.serialize()))
print("generating file done!")
#include
#include
#include
#include <../samples/common/logger.h>
using namespace nvinfer1;
using namespace sample;
const char* IN_NAME = "input";
const char* OUT_NAME = "output";
static const int IN_H = 224;
static const int IN_W = 224;
static const int BATCH_SIZE = 1;
static const int EXPLICIT_BATCH = 1 << (int)(NetworkDefinitionCreationFlag::kEXPLICIT_BATCH);
int main(int argc, char** argv)
{
// Create builder
Logger m_logger;
IBuilder* builder = createInferBuilder(m_logger);
IBuilderConfig* config = builder->createBuilderConfig();
// Create model to populate the network
INetworkDefinition* network = builder->createNetworkV2(EXPLICIT_BATCH);
ITensor* input_tensor = network->addInput(IN_NAME, DataType::kFLOAT, Dims4{ BATCH_SIZE, 3, IN_H, IN_W });
IPoolingLayer* pool = network->addPoolingNd(*input_tensor, PoolingType::kMAX, DimsHW{ 2, 2 });
pool->setStrideNd(DimsHW{ 2, 2 });
pool->getOutput(0)->setName(OUT_NAME);
network->markOutput(*pool->getOutput(0));
// Build engine
IOptimizationProfile* profile = builder->createOptimizationProfile();
profile->setDimensions(IN_NAME, OptProfileSelector::kMIN, Dims4(BATCH_SIZE, 3, IN_H, IN_W));
profile->setDimensions(IN_NAME, OptProfileSelector::kOPT, Dims4(BATCH_SIZE, 3, IN_H, IN_W));
profile->setDimensions(IN_NAME, OptProfileSelector::kMAX, Dims4(BATCH_SIZE, 3, IN_H, IN_W));
config->setMaxWorkspaceSize(1 << 20);
ICudaEngine* engine = builder->buildEngineWithConfig(*network, *config);
// Serialize the model to engine file
IHostMemory* modelStream{ nullptr };
assert(engine != nullptr);
modelStream = engine->serialize();
std::ofstream p("model.engine", std::ios::binary);
if (!p) {
std::cerr << "could not open output file to save model" << std::endl;
return -1;
}
p.write(reinterpret_cast(modelStream->data()), modelStream->size());
std::cout << "generating file done!" << std::endl;
// Release resources
modelStream->destroy();
network->destroy();
engine->destroy();
builder->destroy();
config->destroy();
return 0;
}
失败尝试:下载tensorrt的官方镜像,试图使用镜像中的trtexec,但是在驱动版本为515.105的A800机器上,不论哪个版本的镜像,都会报cuda版本跟驱动版本不匹配的错误
docker pull nvcr.io/nvidia/tensorrt:xx.xx-py3
#第一个xx表示年份,第二个xx表示月份,如22.09,23.01
成功尝试:直接下载tensorrt的tar包,然后在bin目录下执行trtexec命令,好像是不依赖cuda和cudnn的,但是同样要注意,不同版本的tensorrt编译出来的engine文件,在别的版本tensorrt下可能不能运行。
import torch
import onnx
import tensorrt as trt
onnx_model = 'model.onnx'
class NaiveModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.pool = torch.nn.MaxPool2d(2, 2)
def forward(self, x):
return self.pool(x)
device = torch.device('cuda:0')
# generate ONNX model
torch.onnx.export(NaiveModel(), torch.randn(1, 3, 224, 224), onnx_model, input_names=['input'], output_names=['output'], opset_version=11)
onnx_model = onnx.load(onnx_model)
# create builder and network
logger = trt.Logger(trt.Logger.ERROR)
builder = trt.Builder(logger)
EXPLICIT_BATCH = 1 << (int)(
trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
network = builder.create_network(EXPLICIT_BATCH)
# parse onnx
parser = trt.OnnxParser(network, logger)
if not parser.parse(onnx_model.SerializeToString()):
error_msgs = ''
for error in range(parser.num_errors):
error_msgs += f'{parser.get_error(error)}\n'
raise RuntimeError(f'Failed to parse onnx, {error_msgs}')
config = builder.create_builder_config()
config.max_workspace_size = 1<<20
profile = builder.create_optimization_profile()
profile.set_shape('input', [1,3 ,224 ,224], [1,3,224, 224], [1,3 ,224 ,224])
config.add_optimization_profile(profile)
# create engine
with torch.cuda.device(device):
engine = builder.build_engine(network, config)
with open('model.engine', mode='wb') as f:
f.write(bytearray(engine.serialize()))
print("generating file done!")
#include
#include
#include
#include
#include <../samples/common/logger.h>
using namespace nvinfer1;
using namespace nvonnxparser;
using namespace sample;
int main(int argc, char** argv)
{
// Create builder
Logger m_logger;
IBuilder* builder = createInferBuilder(m_logger);
const auto explicitBatch = 1U << static_cast(NetworkDefinitionCreationFlag::kEXPLICIT_BATCH);
IBuilderConfig* config = builder->createBuilderConfig();
// Create model to populate the network
INetworkDefinition* network = builder->createNetworkV2(explicitBatch);
// Parse ONNX file
IParser* parser = nvonnxparser::createParser(*network, m_logger);
bool parser_status = parser->parseFromFile("model.onnx", static_cast(ILogger::Severity::kWARNING));
// Get the name of network input
Dims dim = network->getInput(0)->getDimensions();
if (dim.d[0] == -1) // -1 means it is a dynamic model
{
const char* name = network->getInput(0)->getName();
IOptimizationProfile* profile = builder->createOptimizationProfile();
profile->setDimensions(name, OptProfileSelector::kMIN, Dims4(1, dim.d[1], dim.d[2], dim.d[3]));
profile->setDimensions(name, OptProfileSelector::kOPT, Dims4(1, dim.d[1], dim.d[2], dim.d[3]));
profile->setDimensions(name, OptProfileSelector::kMAX, Dims4(1, dim.d[1], dim.d[2], dim.d[3]));
config->addOptimizationProfile(profile);
}
// Build engine
config->setMaxWorkspaceSize(1 << 20);
ICudaEngine* engine = builder->buildEngineWithConfig(*network, *config);
// Serialize the model to engine file
IHostMemory* modelStream{ nullptr };
assert(engine != nullptr);
modelStream = engine->serialize();
std::ofstream p("model.engine", std::ios::binary);
if (!p) {
std::cerr << "could not open output file to save model" << std::endl;
return -1;
}
p.write(reinterpret_cast(modelStream->data()), modelStream->size());
std::cout << "generate file success!" << std::endl;
// Release resources
modelStream->destroy();
network->destroy();
engine->destroy();
builder->destroy();
config->destroy();
return 0;
}
#输入一个 1x3x224x224 的张量,输出一个 1x3x112x112 的张量
from typing import Union, Optional, Sequence,Dict,Any
import torch
import tensorrt as trt
class TRTWrapper(torch.nn.Module):
def __init__(self,engine: Union[str, trt.ICudaEngine],
output_names: Optional[Sequence[str]] = None) -> None:
super().__init__()
self.engine = engine
if isinstance(self.engine, str):
with trt.Logger() as logger, trt.Runtime(logger) as runtime:
with open(self.engine, mode='rb') as f:
engine_bytes = f.read()
self.engine = runtime.deserialize_cuda_engine(engine_bytes)
self.context = self.engine.create_execution_context()
names = [_ for _ in self.engine]
input_names = list(filter(self.engine.binding_is_input, names))
self._input_names = input_names
self._output_names = output_names
if self._output_names is None:
output_names = list(set(names) - set(input_names))
self._output_names = output_names
def forward(self, inputs: Dict[str, torch.Tensor]):
assert self._input_names is not None
assert self._output_names is not None
bindings = [None] * (len(self._input_names) + len(self._output_names))
profile_id = 0
for input_name, input_tensor in inputs.items():
# check if input shape is valid
profile = self.engine.get_profile_shape(profile_id, input_name)
assert input_tensor.dim() == len(
profile[0]), 'Input dim is different from engine profile.'
for s_min, s_input, s_max in zip(profile[0], input_tensor.shape,
profile[2]):
assert s_min <= s_input <= s_max, \
'Input shape should be between ' \
+ f'{profile[0]} and {profile[2]}' \
+ f' but get {tuple(input_tensor.shape)}.'
idx = self.engine.get_binding_index(input_name)
# All input tensors must be gpu variables
assert 'cuda' in input_tensor.device.type
input_tensor = input_tensor.contiguous()
if input_tensor.dtype == torch.long:
input_tensor = input_tensor.int()
self.context.set_binding_shape(idx, tuple(input_tensor.shape))
bindings[idx] = input_tensor.contiguous().data_ptr()
# create output tensors
outputs = {}
for output_name in self._output_names:
idx = self.engine.get_binding_index(output_name)
dtype = torch.float32
shape = tuple(self.context.get_binding_shape(idx))
device = torch.device('cuda')
output = torch.empty(size=shape, dtype=dtype, device=device)
outputs[output_name] = output
bindings[idx] = output.data_ptr()
self.context.execute_async_v2(bindings,
torch.cuda.current_stream().cuda_stream)
return outputs
model = TRTWrapper('model.engine', ['output'])
output = model(dict(input = torch.randn(1, 3, 224, 224).cuda()))
print(output)
#include
#include
#include
#include <../samples/common/logger.h>
#define CHECK(status) \
do\
{\
auto ret = (status);\
if (ret != 0)\
{\
std::cerr << "Cuda failure: " << ret << std::endl;\
abort();\
}\
} while (0)
using namespace nvinfer1;
using namespace sample;
const char* IN_NAME = "input";
const char* OUT_NAME = "output";
static const int IN_H = 224;
static const int IN_W = 224;
static const int BATCH_SIZE = 1;
static const int EXPLICIT_BATCH = 1 << (int)(NetworkDefinitionCreationFlag::kEXPLICIT_BATCH);
void doInference(IExecutionContext& context, float* input, float* output, int batchSize)
{
const ICudaEngine& engine = context.getEngine();
// Pointers to input and output device buffers to pass to engine.
// Engine requires exactly IEngine::getNbBindings() number of buffers.
assert(engine.getNbBindings() == 2);
void* buffers[2];
// In order to bind the buffers, we need to know the names of the input and output tensors.
// Note that indices are guaranteed to be less than IEngine::getNbBindings()
const int inputIndex = engine.getBindingIndex(IN_NAME);
const int outputIndex = engine.getBindingIndex(OUT_NAME);
// Create GPU buffers on device
CHECK(cudaMalloc(&buffers[inputIndex], batchSize * 3 * IN_H * IN_W * sizeof(float)));
CHECK(cudaMalloc(&buffers[outputIndex], batchSize * 3 * IN_H * IN_W /4 * sizeof(float)));
// Create stream
cudaStream_t stream;
CHECK(cudaStreamCreate(&stream));
// DMA input batch data to device, infer on the batch asynchronously, and DMA output back to host
CHECK(cudaMemcpyAsync(buffers[inputIndex], input, batchSize * 3 * IN_H * IN_W * sizeof(float), cudaMemcpyHostToDevice, stream));
context.enqueue(batchSize, buffers, stream, nullptr);
CHECK(cudaMemcpyAsync(output, buffers[outputIndex], batchSize * 3 * IN_H * IN_W / 4 * sizeof(float), cudaMemcpyDeviceToHost, stream));
cudaStreamSynchronize(stream);
// Release stream and buffers
cudaStreamDestroy(stream);
CHECK(cudaFree(buffers[inputIndex]));
CHECK(cudaFree(buffers[outputIndex]));
}
int main(int argc, char** argv)
{
// create a model using the API directly and serialize it to a stream
char *trtModelStream{ nullptr };
size_t size{ 0 };
std::ifstream file("model.engine", std::ios::binary);
if (file.good()) {
file.seekg(0, file.end);
size = file.tellg();
file.seekg(0, file.beg);
trtModelStream = new char[size];
assert(trtModelStream);
file.read(trtModelStream, size);
file.close();
}
Logger m_logger;
IRuntime* runtime = createInferRuntime(m_logger);
assert(runtime != nullptr);
ICudaEngine* engine = runtime->deserializeCudaEngine(trtModelStream, size, nullptr);
assert(engine != nullptr);
IExecutionContext* context = engine->createExecutionContext();
assert(context != nullptr);
// generate input data
float data[BATCH_SIZE * 3 * IN_H * IN_W];
for (int i = 0; i < BATCH_SIZE * 3 * IN_H * IN_W; i++)
data[i] = 1;
// Run inference
float prob[BATCH_SIZE * 3 * IN_H * IN_W /4];
doInference(*context, data, prob, BATCH_SIZE);
// Destroy the engine
context->destroy();
engine->destroy();
runtime->destroy();
return 0;
}