给你一个由 '1'(陆地)
和 '0'(水)
组成的的二维网格,请你计算网格中岛屿的数量。
岛屿总是被水包围,并且每座岛屿只能由水平方向和/或竖直方向上相邻的陆地连接形成。
此外,你可以假设该网格的四条边均被水包围。
示例 1:
输入:
grid = [
["1","1","1","1","0"],
["1","1","0","1","0"],
["1","1","0","0","0"],
["0","0","0","0","0"]
]
输出:1
示例 2:
输入:
grid = [
["1","1","0","0","0"],
["1","1","0","0","0"],
["0","0","1","0","0"],
["0","0","0","1","1"]
]
输出:3
提示:
m == grid.length
n == grid[i].length
1 <= m, n <= 300
grid[i][j] 的值为 '0' 或 '1'
AC:
/*
* @lc app=leetcode.cn id=200 lang=cpp
*
* [200] 岛屿数量
*/
// @lc code=start
class Solution {
private:
int dir[4][2] = {0, 1, 1, 0, -1, 0, 0, -1};
void bfs(vector<vector<char>>& grid, vector<vector<bool>>& visited, int x, int y) {
queue<pair<int, int>> que;
que.push({x, y});
visited[x][y] = true;
while(!que.empty()) {
pair<int, int> cur = que.front();
que.pop();
int curX = cur.first;
int curY = cur.second;
for(int i = 0; i < 4; i++) {
int nextX = curX + dir[i][0];
int nextY = curY + dir[i][1];
if(nextX < 0 || nextX >= grid.size() || nextY < 0 || nextY >= grid[0].size()) {
continue;
}
if(!visited[nextX][nextY] && grid[nextX][nextY] == '1') {
que.push({nextX, nextY});
visited[nextX][nextY] = true;
}
}
}
}
public:
int numIslands(vector<vector<char>>& grid) {
int m = grid[0].size(), n = grid.size();
vector<vector<bool>> visited = vector<vector<bool>>(n, vector<bool>(m, false));
int count = 0;
for(int i = 0; i < n; i++) {
for(int j = 0; j < m; j++) {
if(!visited[i][j] && grid[i][j] == '1') {
count++;
bfs(grid, visited, i, j);
}
}
}
return count;
}
};
// @lc code=end
相比较之 DFS 递归式写法
BFS 更多的感觉是在于 栈,队列,数组这类数据结构的使用,
就纯粹的的 BFS 问题而言,个人觉得使用队列(先进先出)存储坐标会比较好点,其中坐标可以是用 pair 函数定义存储。
BFS(广度优先搜索)C++模板:
#include
#include
using namespace std;
const int N = 100010;
int n; // 图中结点个数
vector<int> g[N]; // 存储图
void bfs(int u) // u为起点
{
queue<int> q;
q.push(u); // 入队
bool st[N] = {}; // 标记是否访问过
st[u] = true;
while (q.size())
{
auto t = q.front();
q.pop();
// 处理结点t
cout << t << " ";
// 将t的所有邻接点加入队列
for (auto v : g[t])
if (!st[v])
{
q.push(v);
st[v] = true;
}
}
}
int main()
{
cin >> n;
int m;
cin >> m; // m是图中边的个数
while (m--)
{
int a, b;
cin >> a >> b;
g[a].push_back(b);
g[b].push_back(a);
}
bfs(1); // 以1为起点进行BFS
return 0;
}
DFS(深度优先搜索)C++模板:
#include
#include
using namespace std;
const int N = 100010;
int n; // 图中结点个数
vector<int> g[N]; // 存储图
void dfs(int u)
{
// 处理结点u
// 标记已访问过
bool st[N] = {};
st[u] = true;
for (auto v : g[u])
if (!st[v])
dfs(v);
}
int main()
{
cin >> n;
int m;
cin >> m; // m是图中边的个数
while (m--)
{
int a, b;
cin >> a >> b;
g[a].push_back(b);
g[b].push_back(a);
}
dfs(1); // 以1为起点进行DFS
return 0;
}