- Python数据分析与可视化实战指南
William数据分析
pythonpython数据
在数据驱动的时代,Python因其简洁的语法、强大的库生态系统以及活跃的社区,成为了数据分析与可视化的首选语言。本文将通过一个详细的案例,带领大家学习如何使用Python进行数据分析,并通过可视化来直观呈现分析结果。一、环境准备1.1安装必要库在开始数据分析和可视化之前,我们需要安装一些常用的库。主要包括pandas、numpy、matplotlib和seaborn等。这些库分别用于数据处理、数学
- 《Python数据分析实战终极指南》
xjt921122
python数据分析开发语言
对于分析师来说,大家在学习Python数据分析的路上,多多少少都遇到过很多大坑**,有关于技能和思维的**:Excel已经没办法处理现有的数据量了,应该学Python吗?找了一大堆Python和Pandas的资料来学习,为什么自己动手就懵了?跟着比赛类公开数据分析案例练了很久,为什么当自己面对数据需求还是只会数据处理而没有分析思路?学了对比、细分、聚类分析,也会用PEST、波特五力这类分析法,为啥
- Python开发常用的三方模块如下:
换个网名有点难
python开发语言
Python是一门功能强大的编程语言,拥有丰富的第三方库,这些库为开发者提供了极大的便利。以下是100个常用的Python库,涵盖了多个领域:1、NumPy,用于科学计算的基础库。2、Pandas,提供数据结构和数据分析工具。3、Matplotlib,一个绘图库。4、Scikit-learn,机器学习库。5、SciPy,用于数学、科学和工程的库。6、TensorFlow,由Google开发的开源机
- 自然语言处理_tf-idf
_feivirus_
算法机器学习和数学自然语言处理tf-idf逆文档频率词频
importpandasaspdimportmath1.数据预处理docA="Thecatsatonmyface"docB="Thedogsatonmybed"wordsA=docA.split("")wordsB=docB.split("")wordsSet=set(wordsA).union(set(wordsB))print(wordsSet){'on','my','face','sat',
- K近邻算法_分类鸢尾花数据集
_feivirus_
算法机器学习和数学分类机器学习K近邻
importnumpyasnpimportpandasaspdfromsklearn.datasetsimportload_irisfromsklearn.model_selectionimporttrain_test_splitfromsklearn.metricsimportaccuracy_score1.数据预处理iris=load_iris()df=pd.DataFrame(data=ir
- python编写直方图和饼图
2301_80421078
python开发语言
1.直方图#直方图的绘制#语法格式:plt.hist(x,bins),其中x:数据集;bins:统计数据的分布区间importmatplotlib.pyplotaspltimportpandasaspd#导入文件excel=pd.read_excel('成绩.xlsx')#print(excel)#避免乱码plt.rcParams['font.sans-serif']=['SimHei']x=ex
- pythonpandas函数详解_Python pandas常用函数详解
Senvn
本文研究的主要是pandas常用函数,具体介绍如下。1import语句importpandasaspdimportnumpyasnpimportmatplotlib.pyplotaspltimportdatetimeimportre2文件读取df=pd.read_csv(path='file.csv')参数:header=None用默认列名,0,1,2,3...names=['A','B','C'
- python画出分子化学空间分布(UMAP)
Sakaiay
python
利用umap画出分子化学空间分布图安装pipinstallumap-learn下面是用一个数据集举的例子importtorchimportumapimportpandasaspdimportnumpyasnpimportmatplotlib.pyplotaspltimportseabornassnsfromsklearn.manifoldimportTSNEfromrdkit.Chemimport
- python读写CSV文件
bcbobo21cn
.Netpython开发语言机器学习CSV
做数据分析,有时候要分析的数据在CSV文件里;先看一下python读写CSV文件;importpandasaspddf=pd.read_csv('test1.csv')print(df)print('')print(df.head(2))companyname=["A1","B2","E3","F4"]legperson=["lier","yanqi","wangwu","zhangsan"]le
- python如何更方便的处理日期和时间
openwin_top
python编程示例系列python编程示例系列二pythonjava前端
Arrow是一个第三方Python库,提供了更加易用和方便的日期和时间处理接口。它的设计目标是提供一种简单、一致且易于使用的API,以替代Python内置的datetime模块。Arrow支持各种日期和时间的操作,包括时区转换、日期和时间格式化、日期和时间差计算等功能。它还支持与其他日期和时间库的互操作,例如datetime、dateutil和pandas等库。以下是一个使用Arrow库的简单示例
- python下载pandas库镜像_下载pandas库
weixin_39791152
背景交代:在下载matplotlib库时,我已经将pip的下载源手动更改为清华的镜像,所以,如果有小伙伴在下载库遇到问题,如timeout,请先将下载源改为国内镜像,具体操作见我的另一篇文章:今天的主题是安装pandas库~首先,按田字格+R,打开cmd,输入:pipinstallpandas嗯,不出所料地报错了……主要原因:pip._vendor.urllib3.exceptions.ReadT
- python数据分析知识点大全
编程零零七
python数据分析python开发语言python数据分析数据分析知识点大全python数据分析知识点python教程python基础
Python数据分析知识点大全可以归纳为以下几个主要方面:一、基础概念与目的数据分析定义:数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结论,对数据加以详细研究和概括总结的过程。其目的在于从数据中挖掘规律、验证猜想、进行预测。Python在数据分析中的优势:Python因其易学性、快速开发、丰富的扩展库(如NumPy、Pandas等)和成熟的框架,成为数据分析领域的
- 如何“选择不同的“?跨越 pandas 中的多个数据框列?
潮易
pandas
在pandas中,如果你想要选择不同的列,你可以使用DataFrame的loc属性和iloc属性的组合。loc属性是基于标签的,iloc属性则是基于索引的。如果你想要选择多个列,你只需要将它们放入一个列表即可。以下是一个代码示例:```pythonimportpandasaspd#创建一个数据框df=pd.DataFrame({'A':[1,2,3],'B':[4,5,6],'C':[7,8,9]
- 详解 Pandas 的 query 函数
文刀小桂
Pandaspandaspython开发语言
Pandas的query()方法能够使用字符串表达式来筛选DataFrame数据的行,类似于SQL的where子句importpandasaspddf=pd.DataFrame({"A":[1,3,5,6,7],"B":[11,10,9,8,12],"C":["hello","pandas","python","java","shell"],"D":["2024-02-01","2023-12-1
- 详解 Pandas 的 isin 用法
文刀小桂
Pandaspandaspython
Pandas的isin()方法可以判断数据值是否在某个数据集合中,若与集合中的某个值相等则返回True,反之返回False。importpandasaspddf=pd.DataFrame({"title":["one","two","three","four"],"type":["small","common","middle","large"],"num":[10,20,30,40]})#1.判
- Rust: duckdb和polars读csv文件比较
songroom
rust开发语言后端
duckdb在数据分析上,有非常多不错的特质。1、快;2、客户体验好,特别是可以同时批量读csv(在一个目录下的csv等文件)。polars的性能比pandas有非常多的超越。但背后的一些基于arrow的技术栈有很多相同之类。今天想比较一下两者在csv数据读写的情况。一、文件准备csv样本内容,是N行9列的csv标准格式,有字符串,有浮点数,有整型。具体如下:本次准备了两个csv文件,一个大约是2
- groupby 中如何显示 tqdm 的进度条?
domodo2020
在循环时调用tqdm显示进度已经是一个常规操作,常见的方式是foriiintqdm(...):...while循环的情况类似,whileicntintqdm(range(n)):...icnt+=1这里记录没有显式循环时,在groupby中的用法:importpandasaspdimportnumpyasnpfromtqdmimporttqdmdf=pd.DataFrame(np.random.r
- pandas读取xlsx文件使用sqlachemy写到数据库
hzw0510
pandaspandas数据库
pandas读取xlsx文件使用sqlachemy写到数据库要使用pandas和SQLAlchemy将Excel文件中的数据读取到数据库中,你可以按照以下步骤进行操作:安装必要的库:确保你已经安装了pandas、SQLAlchemy和openpyxl(用于读取Excel文件)。可以使用以下命令安装:pipinstallpandassqlalchemyopenpyxl如果你使用的是特定的数据库(如S
- python 问题 ‘list‘ object cannot be interpreted as an integer 和‘int‘ object is not iterable
annekqiu
python
访问同一个excel表格(含有多个sheet)importnumpyasnpimportpandasaspdimportxlrd#读取excel的库importxlwt#写excel的库data=xlrd.open_workbook('./161005.xlsx')#打开excel文件读取数据table=data.sheets()[0]#读取sheet1h=table.ncols#获得列表数目a1
- 【Python】 写入Pandas DataFrame到CSV文件
civilpy
pythonpandas开发语言
基本原理Pandas是一个强大的Python数据分析库,它提供了许多用于数据处理和分析的功能。在处理数据时,我们经常需要将数据保存到文件中,以便后续使用或分享。CSV(Comma-SeparatedValues,逗号分隔值)文件是一种常见的数据交换格式,它以纯文本形式存储表格数据,每行表示一个数据记录,列之间用逗号分隔。DataFrame是Pandas中用于存储表格数据的主要数据结构。它类似于Ex
- Python酷库之旅-第三方库Pandas(115)
神奇夜光杯
pythonpandas开发语言人工智能标准库及第三方库excel学习与成长
目录一、用法精讲506、pandas.DataFrame.rank方法506-1、语法506-2、参数506-3、功能506-4、返回值506-5、说明506-6、用法506-6-1、数据准备506-6-2、代码示例506-6-3、结果输出507、pandas.DataFrame.round方法507-1、语法507-2、参数507-3、功能507-4、返回值507-5、说明507-6、用法507
- Python数据分析之股票信息可视化实现matplotlib
Blogfish
Python3大数据python可视化数据分析
今天学习爬虫技术数据分析对于股票信息的分析及结果呈现,目标是实现对股票信息的爬取并对数据整理后,生成近期成交量折线图。首先,做这个案例一定要有一个明确的思路。知道要干啥,知道用哪些知识,有些方法我也记不住百度下知识库很强大,肯定有答案。有思路以后准备对数据处理,就是几个方法使用了。接口地址参考:Tushare数据涉及知识库:tushare-一个财经数据开放接口;pandas-实现将数据整理为表格,
- pandas中的loc和iloc
白日与明月
python数据挖掘pandas
loc和iloc的比较.loc和.iloc是pandas提供的两种不同的索引方法,它们的主要区别在于索引数据的依据:.loc:基于标签的索引,使用DataFrame或Series的索引标签(即行名和列名)来获取数据。可以使用单个标签、标签列表、标签切片、布尔数组或者callable函数作为索引器。如果使用标签索引并且标签不存在,.loc会抛出一个KeyError。对于切片,包括两端的标签。.ilo
- pandas loc与iloc的区别
authorized_keys
数据处理pythonpandaslociloc
目录一、二者的特点二、官网原文三、例子——总有一款适合你一、二者的特点loc可用“字符”、“整数”、“布尔值”作为索引,也就是标签索引注意:此处的“整数”将被解释为index的一个label而不是index的位置iloc只允许“整数”作为索引,也就是位置索引,和列表索引类似,里面只能是数字注意:此处的“整数”将被解释为index的位置,前闭后开其中,loc是指location的意思,iloc中的i
- pandas中loc和iloc的区别
林光虚霁晓
数据分析pandas
在Pandas中,loc和iloc是用于选择和过滤数据的两种主要方法,它们的区别在于使用的索引类型。1.loc:基于标签索引loc是基于行或列的标签(label)来选择数据。它可以按行或列的名称来访问数据,也可以通过布尔索引选择。支持的索引类型:行标签、列标签、布尔索引。语法:DataFrame.loc[row_indexer,column_indexer]示例importpandasaspd#创
- seurat自学笔记1.0 单细胞数据导入
Sanye2022
pythonpandas
Python读取.h5ad文件importanndataimportpandasaspdadata=anndata.read("/home/R/R_data/Seurat/PBMC10/output/adata.h5ad")#adata.X.todense()#将稀疏矩阵转成普通矩阵#X=pd.DataFrame(adata.X.todense())#cell_name=adata.obs.ind
- Pandas教程:详解Pandas数据清洗
旦莫
PythonPandaspythonpandas数据分析
目录1.引言2.Pandas基础2.1安装与导入2.2创建一个复杂的DataFrame3.数据清洗流程3.1处理缺失值3.1.1删除缺失值3.1.2填充缺失值3.2数据去重3.3数据类型转换4.数据处理与变换4.1添加与删除列4.2数据排序5.数据分组与聚合6.其他数据清洗方法6.1字符串处理6.2时间序列处理6.3数据类型转换1.引言数据清洗是数据科学和数据分析中的一个重要步骤,旨在提升数据的质
- python的pandas库
帅维维
pythonpandas开发语言
什么是pandasPandas是一个开源的第三方Python库,它从Numpy和Matplotlib的基础上构建而来,享有数据分析“三剑客之一”的盛名。Pandas已经成为Python数据分析的必备高级工具,目标是成为强大、灵活、可以支持任何编程语言的数据分析工具。数据结构Pandas中除了Panel数据结构,还引入了两种新的数据结构——Series和DataFrame,这两种数据结构都建立在Nu
- Python数据分析及可视化教程--商城订单为例-适用电商相关进行数据分析---亲测可用!!!!
Dreams°123
AIGC机器学习python测试工具数据分析大数据
前言:Python是进行数据分析和可视化的强大工具,常用的库包括Pandas、NumPy、Matplotlib和Seaborn。以下是一个基本的教程概述,介绍了如何使用这些库来进行数据分析和可视化:Python数据分析及可视化教程1、环境准备2、数据准备3、开始数据分析3.1、导入库3.2、加载数据3.3、数据预处理3.4、数据分析3.5、数据可视化4、总结解释使用方法:5、错误处理和异常判断说明
- python第三方库手动安装教程_为了应对异常情况,提供最原始的python第三方库的安装方法:手动安装。往往是Windows用户需要用到这种方法。...
weixin_39735247
进入pypi.python.org,搜索你要安装的库的名字,这时候有3中可能:第一种是exe文件,这种最方便,下载满足你的电脑系统和python环境的对应的exe,再一路点击next就可以安装。第二种是.whl类文件,好处在于可以自动安装依赖包。第三种是源码,大概都是zip、tar.zip、tar.bz2格式的压缩包,这个方法要求用户已经安装了这个包所依赖的其他包。例如pandas依赖于numpy
- SQL的各种连接查询
xieke90
UNION ALLUNION外连接内连接JOIN
一、内连接
概念:内连接就是使用比较运算符根据每个表共有的列的值匹配两个表中的行。
内连接(join 或者inner join )
SQL语法:
select * fron
- java编程思想--复用类
百合不是茶
java继承代理组合final类
复用类看着标题都不知道是什么,再加上java编程思想翻译的比价难懂,所以知道现在才看这本软件界的奇书
一:组合语法:就是将对象的引用放到新类中即可
代码:
package com.wj.reuse;
/**
*
* @author Administrator 组
- [开源与生态系统]国产CPU的生态系统
comsci
cpu
计算机要从娃娃抓起...而孩子最喜欢玩游戏....
要让国产CPU在国内市场形成自己的生态系统和产业链,国家和企业就不能够忘记游戏这个非常关键的环节....
投入一些资金和资源,人力和政策,让游
- JVM内存区域划分Eden Space、Survivor Space、Tenured Gen,Perm Gen解释
商人shang
jvm内存
jvm区域总体分两类,heap区和非heap区。heap区又分:Eden Space(伊甸园)、Survivor Space(幸存者区)、Tenured Gen(老年代-养老区)。 非heap区又分:Code Cache(代码缓存区)、Perm Gen(永久代)、Jvm Stack(java虚拟机栈)、Local Method Statck(本地方法栈)。
HotSpot虚拟机GC算法采用分代收
- 页面上调用 QQ
oloz
qq
<A href="tencent://message/?uin=707321921&Site=有事Q我&Menu=yes">
<img style="border:0px;" src=http://wpa.qq.com/pa?p=1:707321921:1></a>
- 一些问题
文强chu
问题
1.eclipse 导出 doc 出现“The Javadoc command does not exist.” javadoc command 选择 jdk/bin/javadoc.exe 2.tomcate 配置 web 项目 .....
SQL:3.mysql * 必须得放前面 否则 select&nbs
- 生活没有安全感
小桔子
生活孤独安全感
圈子好小,身边朋友没几个,交心的更是少之又少。在深圳,除了男朋友,没几个亲密的人。不知不觉男朋友成了唯一的依靠,毫不夸张的说,业余生活的全部。现在感情好,也很幸福的。但是说不准难免人心会变嘛,不发生什么大家都乐融融,发生什么很难处理。我想说如果不幸被分手(无论原因如何),生活难免变化很大,在深圳,我没交心的朋友。明
- php 基础语法
aichenglong
php 基本语法
1 .1 php变量必须以$开头
<?php
$a=” b”;
echo
?>
1 .2 php基本数据库类型 Integer float/double Boolean string
1 .3 复合数据类型 数组array和对象 object
1 .4 特殊数据类型 null 资源类型(resource) $co
- mybatis tools 配置详解
AILIKES
mybatis
MyBatis Generator中文文档
MyBatis Generator中文文档地址:
http://generator.sturgeon.mopaas.com/
该中文文档由于尽可能和原文内容一致,所以有些地方如果不熟悉,看中文版的文档的也会有一定的障碍,所以本章根据该中文文档以及实际应用,使用通俗的语言来讲解详细的配置。
本文使用Markdown进行编辑,但是博客显示效
- 继承与多态的探讨
百合不是茶
JAVA面向对象 继承 对象
继承 extends 多态
继承是面向对象最经常使用的特征之一:继承语法是通过继承发、基类的域和方法 //继承就是从现有的类中生成一个新的类,这个新类拥有现有类的所有extends是使用继承的关键字:
在A类中定义属性和方法;
class A{
//定义属性
int age;
//定义方法
public void go
- JS的undefined与null的实例
bijian1013
JavaScriptJavaScript
<form name="theform" id="theform">
</form>
<script language="javascript">
var a
alert(typeof(b)); //这里提示undefined
if(theform.datas
- TDD实践(一)
bijian1013
java敏捷TDD
一.TDD概述
TDD:测试驱动开发,它的基本思想就是在开发功能代码之前,先编写测试代码。也就是说在明确要开发某个功能后,首先思考如何对这个功能进行测试,并完成测试代码的编写,然后编写相关的代码满足这些测试用例。然后循环进行添加其他功能,直到完全部功能的开发。
- [Maven学习笔记十]Maven Profile与资源文件过滤器
bit1129
maven
什么是Maven Profile
Maven Profile的含义是针对编译打包环境和编译打包目的配置定制,可以在不同的环境上选择相应的配置,例如DB信息,可以根据是为开发环境编译打包,还是为生产环境编译打包,动态的选择正确的DB配置信息
Profile的激活机制
1.Profile可以手工激活,比如在Intellij Idea的Maven Project视图中可以选择一个P
- 【Hive八】Hive用户自定义生成表函数(UDTF)
bit1129
hive
1. 什么是UDTF
UDTF,是User Defined Table-Generating Functions,一眼看上去,貌似是用户自定义生成表函数,这个生成表不应该理解为生成了一个HQL Table, 貌似更应该理解为生成了类似关系表的二维行数据集
2. 如何实现UDTF
继承org.apache.hadoop.hive.ql.udf.generic
- tfs restful api 加auth 2.0认计
ronin47
目前思考如何给tfs的ngx-tfs api增加安全性。有如下两点:
一是基于客户端的ip设置。这个比较容易实现。
二是基于OAuth2.0认证,这个需要lua,实现起来相对于一来说,有些难度。
现在重点介绍第二种方法实现思路。
前言:我们使用Nginx的Lua中间件建立了OAuth2认证和授权层。如果你也有此打算,阅读下面的文档,实现自动化并获得收益。SeatGe
- jdk环境变量配置
byalias
javajdk
进行java开发,首先要安装jdk,安装了jdk后还要进行环境变量配置:
1、下载jdk(http://java.sun.com/javase/downloads/index.jsp),我下载的版本是:jdk-7u79-windows-x64.exe
2、安装jdk-7u79-windows-x64.exe
3、配置环境变量:右击"计算机"-->&quo
- 《代码大全》表驱动法-Table Driven Approach-2
bylijinnan
java
package com.ljn.base;
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Collections;
import java.uti
- SQL 数值四舍五入 小数点后保留2位
chicony
四舍五入
1.round() 函数是四舍五入用,第一个参数是我们要被操作的数据,第二个参数是设置我们四舍五入之后小数点后显示几位。
2.numeric 函数的2个参数,第一个表示数据长度,第二个参数表示小数点后位数。
例如:
select cast(round(12.5,2) as numeric(5,2))  
- c++运算符重载
CrazyMizzz
C++
一、加+,减-,乘*,除/ 的运算符重载
Rational operator*(const Rational &x) const{
return Rational(x.a * this->a);
}
在这里只写乘法的,加减除的写法类似
二、<<输出,>>输入的运算符重载
&nb
- hive DDL语法汇总
daizj
hive修改列DDL修改表
hive DDL语法汇总
1、对表重命名
hive> ALTER TABLE table_name RENAME TO new_table_name;
2、修改表备注
hive> ALTER TABLE table_name SET TBLPROPERTIES ('comment' = new_comm
- jbox使用说明
dcj3sjt126com
Web
参考网址:http://www.kudystudio.com/jbox/jbox-demo.html jBox v2.3 beta [
点击下载]
技术交流QQGroup:172543951 100521167
[2011-11-11] jBox v2.3 正式版
- [调整&修复] IE6下有iframe或页面有active、applet控件
- UISegmentedControl 开发笔记
dcj3sjt126com
// typedef NS_ENUM(NSInteger, UISegmentedControlStyle) {
// UISegmentedControlStylePlain, // large plain
&
- Slick生成表映射文件
ekian
scala
Scala添加SLICK进行数据库操作,需在sbt文件上添加slick-codegen包
"com.typesafe.slick" %% "slick-codegen" % slickVersion
因为我是连接SQL Server数据库,还需添加slick-extensions,jtds包
"com.typesa
- ES-TEST
gengzg
test
package com.MarkNum;
import java.io.IOException;
import java.util.Date;
import java.util.HashMap;
import java.util.Map;
import javax.servlet.ServletException;
import javax.servlet.annotation
- 为何外键不再推荐使用
hugh.wang
mysqlDB
表的关联,是一种逻辑关系,并不需要进行物理上的“硬关联”,而且你所期望的关联,其实只是其数据上存在一定的联系而已,而这种联系实际上是在设计之初就定义好的固有逻辑。
在业务代码中实现的时候,只要按照设计之初的这种固有关联逻辑来处理数据即可,并不需要在数据库层面进行“硬关联”,因为在数据库层面通过使用外键的方式进行“硬关联”,会带来很多额外的资源消耗来进行一致性和完整性校验,即使很多时候我们并不
- 领域驱动设计
julyflame
VODAO设计模式DTOpo
概念:
VO(View Object):视图对象,用于展示层,它的作用是把某个指定页面(或组件)的所有数据封装起来。
DTO(Data Transfer Object):数据传输对象,这个概念来源于J2EE的设计模式,原来的目的是为了EJB的分布式应用提供粗粒度的数据实体,以减少分布式调用的次数,从而提高分布式调用的性能和降低网络负载,但在这里,我泛指用于展示层与服务层之间的数据传输对
- 单例设计模式
hm4123660
javaSingleton单例设计模式懒汉式饿汉式
单例模式是一种常用的软件设计模式。在它的核心结构中只包含一个被称为单例类的特殊类。通过单例模式可以保证系统中一个类只有一个实例而且该实例易于外界访问,从而方便对实例个数的控制并节约系统源。如果希望在系统中某个类的对象只能存在一个,单例模式是最好的解决方案。
&nb
- logback
zhb8015
loglogback
一、logback的介绍
Logback是由log4j创始人设计的又一个开源日志组件。logback当前分成三个模块:logback-core,logback- classic和logback-access。logback-core是其它两个模块的基础模块。logback-classic是log4j的一个 改良版本。此外logback-class
- 整合Kafka到Spark Streaming——代码示例和挑战
Stark_Summer
sparkstormzookeeperPARALLELISMprocessing
作者Michael G. Noll是瑞士的一位工程师和研究员,效力于Verisign,是Verisign实验室的大规模数据分析基础设施(基础Hadoop)的技术主管。本文,Michael详细的演示了如何将Kafka整合到Spark Streaming中。 期间, Michael还提到了将Kafka整合到 Spark Streaming中的一些现状,非常值得阅读,虽然有一些信息在Spark 1.2版
- spring-master-slave-commondao
王新春
DAOspringdataSourceslavemaster
互联网的web项目,都有个特点:请求的并发量高,其中请求最耗时的db操作,又是系统优化的重中之重。
为此,往往搭建 db的 一主多从库的 数据库架构。作为web的DAO层,要保证针对主库进行写操作,对多个从库进行读操作。当然在一些请求中,为了避免主从复制的延迟导致的数据不一致性,部分的读操作也要到主库上。(这种需求一般通过业务垂直分开,比如下单业务的代码所部署的机器,读去应该也要从主库读取数