代码随想录刷题day37 738.单调递增的数字;714. 买卖股票的最佳时机含手续费;968.监控二叉树

代码随想录刷题day37 738.单调递增的数字;714. 买卖股票的最佳时机含手续费;968.监控二叉树

继续被贪心折磨的一天。动态规划不会,所以基本算是都跳过了吧。。。

738.单调递增的数字

暴力遍历会超时。

贪心算法

目要求小于等于N的最大单调递增的整数,那么拿一个两位的数字来举例。

例如:98,一旦出现strNum[i - 1] > strNum[i]的情况(非单调递增),首先想让strNum[i - 1]–,然后strNum[i]给为9,这样这个整数就是89,即小于98的最大的单调递增整数。

这一点如果想清楚了,这道题就好办了。

局部最优:遇到strNum[i - 1] > strNum[i]的情况,让strNum[i - 1]–,然后strNum[i]给为9,可以保证这两位变成最大单调递增整数

全局最优:得到小于等于N的最大单调递增的整数

但这里局部最优推出全局最优,还需要其他条件,即遍历顺序,和标记从哪一位开始统一改成9

此时是从前向后遍历还是从后向前遍历呢?

从前向后遍历的话,遇到strNum[i - 1] > strNum[i]的情况,让strNum[i - 1]减一,但此时如果strNum[i - 1]减一了,可能又小于strNum[i - 2]。

这么说有点抽象,举个例子,数字:332,从前向后遍历的话,那么就把变成了329,此时2又小于了第一位的3了,真正的结果应该是299。

所以从前后向遍历会改变已经遍历过的结果!

那么从后向前遍历,就可以重复利用上次比较得出的结果了,从后向前遍历332的数值变化为:332 -> 329 -> 299

确定了遍历顺序之后,那么此时局部最优就可以推出全局,找不出反例,试试贪心。

C++代码如下:

class Solution {
public:
    int monotoneIncreasingDigits(int N) {
        string strNum = to_string(N);
        // flag用来标记赋值9从哪里开始
        // 设置为这个默认值,为了防止第二个for循环在flag没有被赋值的情况下执行
        int flag = strNum.size();
        for (int i = strNum.size() - 1; i > 0; i--) {
            if (strNum[i - 1] > strNum[i] ) {
                flag = i;
                strNum[i - 1]--;
            }
        }
        for (int i = flag; i < strNum.size(); i++) {
            strNum[i] = '9';
        }
        return stoi(strNum);
    }
};
  • 时间复杂度: O ( n ) O(n) O(n),n 为数字长度
  • 空间复杂度: O ( n ) O(n) O(n),需要一个字符串,转化为字符串操作更方便

714. 买卖股票的最佳时机含手续费

714. 买卖股票的最佳时机含手续费 - 力扣(Leetcode)

比买卖股票还懵逼,可能本来就是不适合炒股吧(

贪心算法

在贪心算法:122.买卖股票的最佳时机II (opens new window)中使用贪心策略不用关心具体什么时候买卖,只要收集每天的正利润,最后稳稳的就是最大利润了。

而本题有了手续费,就要关系什么时候买卖了,因为计算所获得利润,需要考虑买卖利润可能不足以手续费的情况。

如果使用贪心策略,就是最低值买,最高值(如果算上手续费还盈利)就卖。

此时无非就是要找到两个点,买入日期,和卖出日期。

  • 买入日期:其实很好想,遇到更低点就记录一下。
  • 卖出日期:这个就不好算了,但也没有必要算出准确的卖出日期,只要当前价格大于(最低价格+手续费),就可以收获利润,至于准确的卖出日期,就是连续收获利润区间里的最后一天(并不需要计算是具体哪一天)。

所以我们在做收获利润操作的时候其实有三种情况:

  • 情况一:收获利润的这一天并不是收获利润区间里的最后一天(不是真正的卖出,相当于持有股票),所以后面要继续收获利润。
  • 情况二:前一天是收获利润区间里的最后一天(相当于真正的卖出了),今天要重新记录最小价格了。
  • 情况三:不作操作,保持原有状态(买入,卖出,不买不卖)

贪心算法C++代码如下:

class Solution {
public:
    int maxProfit(vector<int>& prices, int fee) {
        int result = 0;
        int minPrice = prices[0]; // 记录最低价格
        for (int i = 1; i < prices.size(); i++) {
            // 情况二:相当于买入
            if (prices[i] < minPrice) minPrice = prices[i];

            // 情况三:保持原有状态(因为此时买则不便宜,卖则亏本)
            if (prices[i] >= minPrice && prices[i] <= minPrice + fee) {
                continue;
            }

            // 计算利润,可能有多次计算利润,最后一次计算利润才是真正意义的卖出
            if (prices[i] > minPrice + fee) {
                result += prices[i] - minPrice - fee;
                minPrice = prices[i] - fee; // 情况一,这一步很关键
            }
        }
        return result;
    }
};
  • 时间复杂度:O(n)
  • 空间复杂度:O(1)

从代码中可以看出对情况一的操作,因为如果还在收获利润的区间里,表示并不是真正的卖出,而计算利润每次都要减去手续费,所以要让minPrice = prices[i] - fee;,这样在明天收获利润的时候,才不会多减一次手续费!

968.监控二叉树

968. 监控二叉树 - 力扣(Leetcode)

相当难的题目,等熟悉动态规划了再仔细看看。

你可能感兴趣的:(贪心算法,算法,leetcode)