时间复杂度和空间复杂度总结(C语言、数据结构和算法基础概念)

前言
算法复杂度是数据结构和算法学习的基础, 这里先给大家补充两个知识点,数据结构和算法的一些基础概念,也是复杂度的研究对象。

  1. 什么是数据结构?
    数据结构(Date Structure)是计算机存储、组织数据的方式,指相互之间存在一种或者多种特定关系的数据元素。简而言之就是内存中管理数据的结构。

    区分
    数据结构–在内存中存储管理数据
    数据库–在磁盘中存储管理数据

  2. 什么是算法?
    算法(Algorithm)就是定义良好的计算过程,他取一个或一组的值为输入,并产生一个或者一组的值作为输出。简单来说算法就是一系列的计算步骤,用来将输入数据转换成预期的输出结果。
    注意:数据结构和算法是密不可分的,你中有我,我中有你。

  3. 数据结构和算法的重要性
    对我们而言:他们是找工作必备的知识,在笔试面试过程中,会有大量的关于数据结构和算法的相关考点。此外,学习他们也可以帮助我们提高编程能力,学好他们能在编程竞赛(蓝桥杯)、LeetCode OJ中行云流水


  • 什么是算法复杂度
  1. 算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源 。因此衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度
  2. 时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。
  3. 在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。

文章目录

  • 1. 时间复杂度
    • 1.1 时间复杂度的概念
    • 1.2 大O的渐进表示法
    • 1.3 常见实例
  • 2. 空间复杂度
    • 2.1 空间复杂度的概念
    • 2.2 常见实例
  • 3. 常见复杂度对比

1. 时间复杂度

1.1 时间复杂度的概念

时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度

即:找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度

举一个简单的例子:

// 请计算一下Func1中++count语句总共执行了多少次?
void Func1(int N)
{
    int count = 0;
    for (int i = 0; i < N ; ++ i)
    {
        for (int j = 0; j < N ; ++ j)
        {
            ++count;
        }
    }
    for (int k = 0; k < 2 * N ; ++ k)
    {
        ++count;
    }
    int M = 10;
    while (M--)
    {
        ++count;
    }

    printf("%d\n", count);
}

Func1执行的基本操作次数: F(N) = N^2 + 2*N + 10

实际中我们计算时间复杂度时,我们其实不一定要计算精确的执行次数,而只需要大概执行次数,那么这里我们使用大O的渐进表示法


1.2 大O的渐进表示法

大O符号(Big O notation):是用于描述函数渐进行为的数学符号

推导大O阶的方法步骤

  1. 用常数1取代运行时间中的所有加法常数。
  2. 在修改后的运行次数函数中,只保留最高阶项。
  3. 如果最高阶项存在且不是常数1,则去除与该项相乘的常数,最终得到的结果就是大O阶。

使用大O渐进表示法后,Func1的时间复杂度为:O(N^2)

通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了地表示出了执行次数。

时间复杂度的三种情况

  • 最坏情况:任意输入规模的最大运行次数(上界)
  • 平均情况:任意输入规模的期望运行次数
  • 最好情况:任意输入规模的最小运行次数(下界)

例如:在一个长度为N的数组中搜索数据X

  • 最好情况:1次找到
  • 最坏情况:N次找到
  • 平均情况:N/2次找到

在实际情况中一般关注的是算法的最坏运行情况,所以数组中搜索数据的时间复杂度为O(N)


1.3 常见实例

实例1

// 计算Func2的时间复杂度?
void Func2(int N)
{
    int count = 0;
    for (int k = 0; k < 2 * N ; ++ k)
    {
        ++count;
    }
    int M = 10;
    while (M--)
    {
      ++count;
    }
    printf("%d\n", count);
}

分析
实例1基本操作执行了2N+10次,通过推导大O阶方法知道,时间复杂度为 O(N)


实例2

// 计算Func3的时间复杂度?
void Func3(int N, int M)
{
    int count = 0;
    for (int k = 0; k < M; ++ k)
    {
        ++count;
    }
    for (int k = 0; k < N ; ++ k)
    {
        ++count;
    }
    printf("%d\n", count);
}

分析
实例2基本操作执行了M+N次,有两个未知数M和N,时间复杂度为 O(N+M)


实例3

// 计算Func4的时间复杂度?
void Func4(int N)
{
    int count = 0;
    for (int k = 0; k < 100; ++ k)
    {
        ++count;
    }
    printf("%d\n", count);
}

分析
实例3基本操作执行了10次,通过推导大O阶方法,时间复杂度为 O(1)


实例4

// 计算strchr的时间复杂度?
const char * strchr ( const char * str, int character );

分析
实例4基本操作执行最好1次,最坏N次,时间复杂度一般看最坏,时间复杂度为 O(N)


实例5

// 计算BubbleSort的时间复杂度?
void BubbleSort(int* a, int n)
{
    assert(a);
    for (size_t end = n; end > 0; --end)
    {
        int exchange = 0;
        for (size_t i = 1; i < end; ++i)
        {
            if (a[i-1] > a[i])
            {
                Swap(&a[i-1], &a[i]);
                exchange = 1;
            }
        }
        if (exchange == 0)
            break;
    }
}

分析
实例5基本操作执行最好N次,最坏执行了(N*(N+1)/2次,通过推导大O阶方法+时间复杂度一般看最坏,时间复杂度为O(N^2)


实例6

// 计算BinarySearch的时间复杂度?
int BinarySearch(int* a, int n, int x)
{
    assert(a);
    int begin = 0;
    int end = n-1;
    // [begin, end]:begin和end是左闭右闭区间,因此有=号
    while (begin <= end)
    {
        int mid = begin + ((end-begin)>>1);
        if (a[mid] < x)
            begin = mid+1;
        else if (a[mid] > x)
            end = mid-1;
        else
            return mid;
    }
    return -1;
}

分析
实例6基本操作执行最好1次,最坏O(logN)次,时间复杂度为 O(logN)。
ps:logN在算法分析中表示是底数为2,对数为N。有些地方会写成lgN。


实例7

// 计算阶乘递归Fac的时间复杂度?
long long Fac(size_t N)
{
    if(0 == N)
        return 1;
        
    return Fac(N-1)*N;
}

分析
实例7通过计算分析发现基本操作递归了N次,时间复杂度为O(N)。


实例8

// 计算斐波那契递归Fib的时间复杂度?
long long Fib(size_t N)
{
    if(N < 3)
        return 1;
        
    return Fib(N-1) + Fib(N-2);
}

分析
实例8通过计算分析发现基本操作递归了2N次,时间复杂度为O(2N)。


2. 空间复杂度

2.1 空间复杂度的概念

  1. 空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时占用存储空间大小的量度 。
  2. 空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。空间复杂度计算规则基本跟实践复杂度类似,也使用大O渐进表示法
  3. 注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定

2.2 常见实例

实例1

// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n)
{
    assert(a);
    for (size_t end = n; end > 0; --end)
    {
        int exchange = 0;
        for (size_t i = 1; i < end; ++i)
        {
            if (a[i-1] > a[i])
            {
                Swap(&a[i-1], &a[i]);
                exchange = 1;
            }
        }
        if (exchange == 0)
            break;
    }
}

分析
实例1使用了常数个额外空间,所以空间复杂度为 O(1)


实例2

// 计算Fibonacci的空间复杂度?
// 返回斐波那契数列的前n项
long long* Fibonacci(size_t n)
{
    if(n==0)
    return NULL;
    long long * fibArray = (long long *)malloc((n+1) * sizeof(long long));
    fibArray[0] = 0;
    fibArray[1] = 1;
    for (int i = 2; i <= n ; ++i)
    {
        fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
    }
    return fibArray;
}

分析
实例2动态开辟了N个空间,空间复杂度为 O(N)


实例3

// 计算阶乘递归Fac的空间复杂度?
long long Fac(size_t N)
{
    if(N == 0)
        return 1;
        
    return Fac(N-1)*N;
}

分析
实例3递归调用了N次,开辟了N个栈帧,每个栈帧使用了常数个空间。空间复杂度为O(N)


3. 常见复杂度对比

下面表格从上往下,时间复杂度越来越大,运行效率越来越低。

大O渐进表示 量级
O(1) 常数阶
O(logn) 对数阶
O(n) 线性阶
O(nlogn) 线性对数阶
O(n^2) 平方阶
O(n^3) 立方阶
O(n^k) K次方阶
O(2^n) 指数阶
O(n!) 阶乘阶

学习记录:2022.6.21对数据结构初阶进行复习,并整理本篇博客。
如果有错误的地方请多多指教。

你可能感兴趣的:(数据结构与算法,算法,c语言,数据结构)