- 在安卓设备上使用ADB Shell实现自动向微信好友发送消息的脚本
谢平康
androidadb微信
安卓实现自动给微信好友发送消息的Shell脚本以下是一个简单的Shell脚本示例,用于通过ADB命令在安卓设备上自动打开微信,搜索指定好友,并发送消息。最后,通过截图来确认消息是否成功发送。脚本步骤1.打开微信adbshellamstart-ncom.tencent.mm/.ui.LauncherUI2.(可选)获取屏幕大小#如果需要基于屏幕大小进行坐标定位,可以使用以下命令#adbshellwm
- 构建智能对话式BI的关键:ChatBI场景下的Agent框架选型深
写在前面在数据驱动决策的时代,商业智能(BI)工具扮演着至关重要的角色。然而,传统BI工具往往需要用户具备一定的SQL知识或熟悉复杂的操作界面。对话式BI(ChatBI)的出现,旨在通过自然语言交互,让任何人都能轻松获取数据洞察,极大降低了数据分析的门槛。构建一个强大、灵活且可扩展的ChatBI应用,其核心离不开一个合适的Agent框架。Agent框架如同应用的“龙骨”,为LLM赋予了感知、思考、
- Qt:QCustomPlot库简介
十秒耿直拆包选手
CandC++QtandPysideQCustomPlot学习qtc++QCustomPlot
QCustomPlot是一个基于Qt框架的轻量级C++绘图库,专为高效绘制二维图表(如曲线图、柱状图、金融图表等)而设计。相比QtCharts模块,它以高性能和高度可定制性著称,尤其适合需要实时数据可视化的科学计算、工业监控和金融分析场景。核心特性概览特性说明轻量高效仅需2个头文件+1个源码文件,零外部依赖实时性能优化处理百万级数据点,支持OpenGL加速多图层系统支持无限图层叠加,独立坐标系交互
- OpenCV实战:图像颜色识别与提取、掩膜制作
前言在计算机视觉和图像处理领域,颜色识别是一项基础而重要的技术。无论是交通标志识别、工业分拣还是美颜滤镜开发,都离不开对特定颜色的处理。本文将带你全面掌握使用OpenCV进行颜色识别的关键技术,包含完整的代码实现和原理讲解。一、颜色空间基础1.1RGB颜色空间在图像处理中,最常见的就是RGB颜色空间。RGB颜色空间是我们接触最多的颜色空间,是一种用于表示和显示彩色图像的一种颜色模型。RGB代表红色
- OpenCV图像添加水印
一、前言在数字图像处理中,为图片添加水印是一项常见且重要的技术。无论是版权保护、品牌宣传还是防止未经授权的使用,水印都能发挥重要作用。OpenCV作为一款强大的计算机视觉库,提供了丰富的功能来实现各种水印效果。本教程将详细介绍如何使用OpenCV为图像添加文字水印和图片水印。二、环境准备在开始之前,请确保已安装以下环境:Python3.xOpenCV库(可通过pipinstallopencv-py
- LeetCode 学习day3 不喜勿喷
小小小新人12123
leetcode学习算法python
题目:给定一个数组prices,它的第i个元素prices[i]表示一支给定股票第i天的价格。你只能选择某一天买入这只股票,并选择在未来的某一个不同的日子卖出该股票。设计一个算法来计算你所能获取的最大利润。返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回0。(LeetCode121.买卖股票的最佳时机)问题分析:简而言之为求最大差Python代码:importnumpyasnpc
- 嵌入式原理与应用篇---常见基础知识(9)
Atticus-Orion
微处理器原理与应用篇上位机操作篇上位机知识篇网络微处理器原理与应用
冯诺伊曼计算机的组成部分及功能冯诺伊曼计算机的设计基于“存储程序”原理,其核心思想是将程序和数据以二进制形式存储在存储器中,由计算机自动执行。以下是各部分的功能及设计思路:一、运算器(ArithmeticLogicUnit,ALU)功能:负责执行算术运算(如加减乘除)和逻辑运算(如与、或、非),是计算机处理数据的核心部件。设计思路:通过逻辑门电路(如全加器、乘法器)实现基本运算,采用并行计算结构提
- 什么是MPC(多方安全计算,Multi-Party Computation)
MonkeyKing.sun
安全
MPC(多方安全计算,Multi-PartyComputation)是一种密码学技术,允许多个参与方在不泄露各自私密输入数据的前提下,共同完成一个计算,并得到正确的计算结果。一、什么是MPC?定义:**多方安全计算(MPC)是一种加密协议,允许多个参与者在输入保持私密的情况下,**安全地进行联合计算,并仅暴露计算结果,而不暴露任何中间信息或原始数据。二、通俗理解:一群人合算工资平均值,但不想互相知
- 图像检索评价指标:mAP@k、mAP的计算
/home/liupc
11Python/DL/ML
mAP,meanAveragePrecision,平均检索精度.是图像检索领域最最常用的评价指标。一、mAP@k、mAP1.1mAP@k很多地方喜欢用这张图来解释,确实画的很好了,不过略有瑕疵,我稍微修改了一下。这张图是求mAP@10的结果。原图主要存在的问题就是,在前10张图片中,把所有的相似的结果都返回了。这样会给读者造成这样的困扰:没检索出来的但是又相似的图片怎么办??改了之后,就清晰多了。
- Delta视觉定位系统
东城十三
vuca数码相机计算机视觉目标跟踪算法人工智能机器学习
Delta视觉定位系统软件应用背景Delta机器人以并联构型实现“轻量、高速、高精度”三位一体,成为高速分拣、精密装配、食品包装等领域的佼佼者。然而,其卓越的物理性能要转化为实际作业中的高精度定位取放能力,视觉定位系统是不可或缺的“眼睛”和“导航员”。尤其在面对高速运动目标或随机摆放(无序)物体的复杂场景时,视觉系统是实现高效、精准作业的核心技术保障。通过机器视觉实时识别目标物体的位置与姿态,引导
- 具身智能基础
frostmelody
人工智能
1.MuJoCo:高保真物理仿真的核心引擎技术本质定义:MuJoCo(Multi-JointDynamicswithContact)是由EmoTodorov开发的物理仿真引擎,专注于多关节系统接触动力学的高效计算。核心突破:约束动力学模型:采用约束优化(而非传统弹簧阻尼模型)模拟物体接触,避免穿透和数值不稳定(公式:min12q˙TMq˙+q˙Tf\text{min}\frac{1}{2}\dot
- Promptify与ReActAgent
frostmelody
人工智能
一、Promptify定位:NLP任务的「自动化流水线」1.解决什么问题?传统LLM应用开发痛点:反复调试:需手工编写/调整prompt格式(如调整分隔符、示例数量)兼容性差:不同模型需重写适配代码输出不稳定:非结构化文本需额外解析Promptify用标准化流水线解决上述问题,将复杂prompt工程简化为三行代码:model=OpenAI(api_key)#选择模型prompter=Prompte
- 计算机组成原理 DRAM的集中刷新,分散刷新,异步刷新
blacksheep107
笔记
3.用16K×8位的DRAM芯片构成64K×32位存储器,设存储器读/写周期为0.5μs,CPU在1μs内至少要访问一次。试问采用哪种刷新方式比较合理?两次刷新的最大时间间隔是多少?对全部存储单元刷新一遍所需的实际刷新时间是多少?先求存储单元是几行几列的(按芯片算),16K=214B=(27)2B=(128×128)B。得存储单元是128×128。DRAM最大刷新周期:2ms,8ms,16ms等(
- Python | 期末复习具体知识点(hbut 邵光普)
我推是大富翁
pythonpython
Python复习具体知识点1、表达式not3or6的值:在Python中,not3or6这个表达式的含义可以分解为以下步骤来理解:not3:not是一个逻辑运算符,用于对一个布尔值进行取反。但在这里,它作用于一个整数值3。在Python中,任何非零数值都被视为True,因此not3会被转换为False。Falseor6:接下来,or运算符会检查其左侧的值。如果左侧为False(或任何被视为Fals
- 计算机组成原理 超详细DRAM集中刷新、分散刷新,异步刷新
在一个存取周期内,我们可以只进行读写操作,也可以只进行刷新操作;同样也可以前半段读写后半段刷新。但是对于如何设置DRAM刷新,那么就引入了下面的三种刷新方式1.集中刷新:统一分配时间来刷新DRAM,对于刷新间隔为2ms,内部储存单元为128*128的DRAM。若存取周期是0.5us,那么需要分配128*0.5也就是64us的时间来统一刷新每一行。这部分的时间称为死时间,此时不能进行读写操作。我们把
- 第27篇:SELinux安全增强机制深度解析与OpenEuler实践指南
SELinux安全增强机制深度解析与OpenEuler实践指南一、SELinux核心概念与安全体系架构1.1访问控制机制演进与SELinux定位在计算机系统安全领域,访问控制机制经历了从简单到复杂的发展历程。传统的自主访问控制(DAC)以文件所有者权限为核心,如Linux中的UID/GID权限体系,允许所有者自由分配权限,但这种机制在面对多用户复杂环境时存在安全隐患——一旦用户账户被入侵,攻击者可
- 并发基础7(守护线程)
浅水壁虎
多线程java服务器开发语言
目录1:什么守护线程2:守护线程使用3:守护线程案例1:什么守护线程守护线程是Java中的一种特殊的线程类型,它为其他线程(非守护线程)提供后台支持服务。在Java多线程编程中,有两种特殊类型的线程:后台线程和守护线程。这两种线程在一些特定的场景下非常有用,但也需要谨慎使用。本文将详细介绍后台线程和守护线程的概念、特性、用法,以及注意事项。守护线程的特点服务性质:守护线程通常用于执行后台任务,如J
- python ks值计算_风控模型中的K-S理解以及python实现
weixin_39747293
pythonks值计算
笔者在工作中计算单变量的ks值时,发现几个分布不同的变量好y计算的ks值相同,凭借统计直觉,发现一定存在问题,笔者从数据和计算ks代码两个方向进行排除。最后定位到计算使用stats.ks_2samp()函数计算ks值时,如果变量存在缺失值,计算得到ks值有误,下面笔者就来好好梳理一下ks值的前世今生。ks检验介绍笔者刚入门机器学习开始做的例子就是金融场景下风控模型。那时评价模型的好坏就用传统的机器
- 我的世界进阶模组开发教程——机械动力的数据生成(1)
lemon_sjdk
我的世界
机械动力注册元素的方式是依赖registrateAPI来实现注册的,这个API和之前说的GlitchCore库所用的注册方式高效多了,不管是开发效率还是可维护性,都比bop式注册好多了,因此学习第三篇和第四篇文章是重中之重代码解析:Create模组主类(Create.java)核心字段解析基础标识字段ID="create":模组唯一标识符,用于资源定位(如create:gear)。NAME="Cr
- 浅谈卷积神经网络(CNN)
cyc&阿灿
cnn人工智能神经网络
卷积神经网络(ConvolutionalNeuralNetworks,CNN)作为深度学习领域最具影响力的架构之一,已在计算机视觉、自然语言处理、医学影像分析等领域取得了革命性突破。本文将系统全面地剖析CNN的核心原理、关键组件、经典模型、数学基础、训练技巧以及最新进展,通过理论解析与代码实践相结合的方式,帮助读者深入掌握这一重要技术。一、CNN基础与核心思想1.1传统神经网络的局限性在处理图像等
- 选择Alluxio来解决AI模型训练场景数据访问的五大理由
Alluxio
人工智能AI分布式大数据语言模型
在AI模型训练尤其是大模型领域,存储系统的性能和稳定性直接决定了模型训练、推理、部署任务的效率和成本。随着全球AI行业的爆发带来的数据规模的快速增长,如何高效管理和利用这些数据成为AI模型训练中的一大挑战。AI模型训练场景面临的五大难题1.数据读写性能不足在AI模型训练与推理过程中,数据的高效读写是确保计算效率的关键。然而,随着数据集的急剧增长,存储系统往往无法满足对高速数据传输的需求,导致读写性
- AI算力综述和资料整理
木鱼时刻
人工智能
目录总体介绍计算精度传输协议GPU池化资源调度CUDA技术GPU硬件参考链接总体介绍AI算力是人工智能系统的核心基础设施,涵盖了从计算精度、传输协议到硬件架构的完整技术栈。计算精度混合精度训练原生满血版DeepSeek671B是FP8精度。FP16在训练计算力占比有80-90%,FP32占比10%-20%。大模型训练中通常会用到FP16(半精度浮点数),但并不是只使用FP16,而是采用**混合精度
- 对照原则在临床试验中的应用与挑战
一、对照原则的科学逻辑1.1核心目的1.1.1区分混杂效应通过对照组设置,区分疾病自然进程、安慰剂效应、回归均值现象及非特异性效应等混杂因素,凸显干预措施的真实疗效。1.2统计本质1.2.1真实疗效计算真实疗效=(干预组终点变化-干预组基线)-(对照组终点变化-对照组基线),通过组间比较抵消共同偏倚。二、对照组的五大类型及适用场景2.1安慰剂对照2.1.1构成外观/用法相同的无活性物质。2.1.2
- HTTP常见状态码汇总
Ailerx
计算机网络http网络协议网络
HTTP常见状态码汇总HTTP状态码是服务器对客户端请求的响应结果,用三位数字表示,分为五类。了解常见状态码,有助于快速定位问题和优化体验。1xx:信息响应100Continue说明客户端可以继续发送请求的剩余部分。常见于大文件上传,告诉客户端服务器已准备好。2xx:成功200OK请求成功,服务器返回请求的数据。最常见的成功状态码。201Created资源创建成功,比如POST请求新建数据后返回。
- 中科亿海微SoM模组——基于FPGA+RSIC-V的计算机板卡
ehiway
fpga开发
基于FPGA+RSIC-V的计算机板卡主芯片使用中科亿海微EQ6HL45-CSG324FPGA芯片和高性能微控制器HPM6880,并集合ADCLHA6958H、6通道数字隔离器SiLM5760、SiLM5763、内存W634GU6QB等器件,板卡实现了大容量配置存储等功能的融合,为模拟信号采集、数字信号处理、逻辑控制等应用提供高性能混合信号处理通用硬件平台。图板卡硬件整体框图图板卡实物图EQ6HL
- MSTP技术解析:提升网络负载均衡
Honey\
服务器运维
MSTP背景RSTP/STP的缺陷:RSTP/STP的被阻塞端口阻塞的链路不承载任何流量,无法实现数据的负载均衡;可能有二层次优路径MSTP:通过将一个或多个VLAN映射到instance上,再基于instance进行生成树的计算解决了二层环路问题;提供了二层网络冗余环境;实现流量的负载分担MSTP基本概念MSTRegion(多生成树域):MSTP网络中包含一个或多个MST域MSTI(多生成树实例
- Web中间件性能调优指南:线程池、长连接与负载均衡的最佳实践
编程实战派-李工
《Java负载均衡中间件优化Tomcat调优Nginx配置性能工程线程池技术Keep-Alive优化
目录引言一、Web容器线程池配置不当1.1线程池参数的核心作用与影响1.2线程池大小计算模型1.3动态调优实践二、Keep-Alive机制配置缺陷2.1Keep-Alive的工作原理2.2典型配置问题与影响2.3优化配置建议三、负载均衡策略缺失3.1负载均衡的核心价值3.2主流负载均衡算法对比3.3Nginx关键配置优化四、全链路压测与调优方案4.1压测实施流程4.2典型优化案例4.3持续监控体系
- 从入门到精通:前端工程师必学的 JSON 全解析
前端视界
前端json状态模式ai
从入门到精通:前端工程师必学的JSON全解析关键词:JSON、前端工程师、数据交换、JavaScript、数据格式摘要:本文围绕前端工程师必学的JSON展开全面解析。从JSON的基本概念、背景知识入手,深入探讨其核心原理、算法实现、数学模型等方面。通过详细的代码示例和实际应用场景分析,帮助前端工程师从入门到精通掌握JSON的使用。同时,提供了丰富的学习资源、开发工具和相关论文推荐,最后对JSON的
- RDKit:药物化学和分子数据处理的强大工具库
碳酸的唐
机器学习人工智能
引言在药物研发、化学信息学和分子设计领域,高效处理和分析分子数据是至关重要的。RDKit作为一个开源的化学信息学和机器学习工具包,为研究人员和数据科学家提供了丰富的功能,包括分子操作、描述符计算、指纹生成、相似性比较、子结构搜索和分子可视化等。本文将详细介绍RDKit的主要功能、应用场景以及实际操作示例,展示这一强大工具在分子数据处理中的核心价值。RDKit简介RDKit是一个由C++和Pytho
- LSNet: 基于侧向抑制的神经网络
碳酸的唐
模型养成与叙述有意思的py库神经网络人工智能深度学习
引言在计算机视觉领域,我们一直在寻找灵感来源以提高图像处理和识别的效果。而人类视觉系统作为经过数百万年进化的精密系统,无疑是最好的参考对象之一。今天,我要向大家介绍一个名为LSNet(LateralSuppressionNetwork,侧向抑制网络)的技术,它模拟了人类视觉系统中的侧向抑制机制,为计算机视觉任务带来了新的可能性。什么是侧向抑制?侧向抑制(LateralSuppression),也被
- java数字签名三种方式
知了ing
javajdk
以下3钟数字签名都是基于jdk7的
1,RSA
String password="test";
// 1.初始化密钥
KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("RSA");
keyPairGenerator.initialize(51
- Hibernate学习笔记
caoyong
Hibernate
1>、Hibernate是数据访问层框架,是一个ORM(Object Relation Mapping)框架,作者为:Gavin King
2>、搭建Hibernate的开发环境
a>、添加jar包:
aa>、hibernatte开发包中/lib/required/所
- 设计模式之装饰器模式Decorator(结构型)
漂泊一剑客
Decorator
1. 概述
若你从事过面向对象开发,实现给一个类或对象增加行为,使用继承机制,这是所有面向对象语言的一个基本特性。如果已经存在的一个类缺少某些方法,或者须要给方法添加更多的功能(魅力),你也许会仅仅继承这个类来产生一个新类—这建立在额外的代码上。
- 读取磁盘文件txt,并输入String
一炮送你回车库
String
public static void main(String[] args) throws IOException {
String fileContent = readFileContent("d:/aaa.txt");
System.out.println(fileContent);
- js三级联动下拉框
3213213333332132
三级联动
//三级联动
省/直辖市<select id="province"></select>
市/省直辖<select id="city"></select>
县/区 <select id="area"></select>
- erlang之parse_transform编译选项的应用
616050468
parse_transform游戏服务器属性同步abstract_code
最近使用erlang重构了游戏服务器的所有代码,之前看过C++/lua写的服务器引擎代码,引擎实现了玩家属性自动同步给前端和增量更新玩家数据到数据库的功能,这也是现在很多游戏服务器的优化方向,在引擎层面去解决数据同步和数据持久化,数据发生变化了业务层不需要关心怎么去同步给前端。由于游戏过程中玩家每个业务中玩家数据更改的量其实是很少
- JAVA JSON的解析
darkranger
java
// {
// “Total”:“条数”,
// Code: 1,
//
// “PaymentItems”:[
// {
// “PaymentItemID”:”支款单ID”,
// “PaymentCode”:”支款单编号”,
// “PaymentTime”:”支款日期”,
// ”ContractNo”:”合同号”,
//
- POJ-1273-Drainage Ditches
aijuans
ACM_POJ
POJ-1273-Drainage Ditches
http://poj.org/problem?id=1273
基本的最大流,按LRJ的白书写的
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
#define INF 0x7fffffff
int ma
- 工作流Activiti5表的命名及含义
atongyeye
工作流Activiti
activiti5 - http://activiti.org/designer/update在线插件安装
activiti5一共23张表
Activiti的表都以ACT_开头。 第二部分是表示表的用途的两个字母标识。 用途也和服务的API对应。
ACT_RE_*: 'RE'表示repository。 这个前缀的表包含了流程定义和流程静态资源 (图片,规则,等等)。
A
- android的广播机制和广播的简单使用
百合不是茶
android广播机制广播的注册
Android广播机制简介 在Android中,有一些操作完成以后,会发送广播,比如说发出一条短信,或打出一个电话,如果某个程序接收了这个广播,就会做相应的处理。这个广播跟我们传统意义中的电台广播有些相似之处。之所以叫做广播,就是因为它只负责“说”而不管你“听不听”,也就是不管你接收方如何处理。另外,广播可以被不只一个应用程序所接收,当然也可能不被任何应
- Spring事务传播行为详解
bijian1013
javaspring事务传播行为
在service类前加上@Transactional,声明这个service所有方法需要事务管理。每一个业务方法开始时都会打开一个事务。
Spring默认情况下会对运行期例外(RunTimeException)进行事务回滚。这
- eidtplus operate
征客丶
eidtplus
开启列模式: Alt+C 鼠标选择 OR Alt+鼠标左键拖动
列模式替换或复制内容(多行):
右键-->格式-->填充所选内容-->选择相应操作
OR
Ctrl+Shift+V(复制多行数据,必须行数一致)
-------------------------------------------------------
- 【Kafka一】Kafka入门
bit1129
kafka
这篇文章来自Spark集成Kafka(http://bit1129.iteye.com/blog/2174765),这里把它单独取出来,作为Kafka的入门吧
下载Kafka
http://mirror.bit.edu.cn/apache/kafka/0.8.1.1/kafka_2.10-0.8.1.1.tgz
2.10表示Scala的版本,而0.8.1.1表示Kafka
- Spring 事务实现机制
BlueSkator
spring代理事务
Spring是以代理的方式实现对事务的管理。我们在Action中所使用的Service对象,其实是代理对象的实例,并不是我们所写的Service对象实例。既然是两个不同的对象,那为什么我们在Action中可以象使用Service对象一样的使用代理对象呢?为了说明问题,假设有个Service类叫AService,它的Spring事务代理类为AProxyService,AService实现了一个接口
- bootstrap源码学习与示例:bootstrap-dropdown(转帖)
BreakingBad
bootstrapdropdown
bootstrap-dropdown组件是个烂东西,我读后的整体感觉。
一个下拉开菜单的设计:
<ul class="nav pull-right">
<li id="fat-menu" class="dropdown">
- 读《研磨设计模式》-代码笔记-中介者模式-Mediator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
* 中介者模式(Mediator):用一个中介对象来封装一系列的对象交互。
* 中介者使各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互。
*
* 在我看来,Mediator模式是把多个对象(
- 常用代码记录
chenjunt3
UIExcelJ#
1、单据设置某行或某字段不能修改
//i是行号,"cash"是字段名称
getBillCardPanelWrapper().getBillCardPanel().getBillModel().setCellEditable(i, "cash", false);
//取得单据表体所有项用以上语句做循环就能设置整行了
getBillC
- 搜索引擎与工作流引擎
comsci
算法工作搜索引擎网络应用
最近在公司做和搜索有关的工作,(只是简单的应用开源工具集成到自己的产品中)工作流系统的进一步设计暂时放在一边了,偶然看到谷歌的研究员吴军写的数学之美系列中的搜索引擎与图论这篇文章中的介绍,我发现这样一个关系(仅仅是猜想)
-----搜索引擎和流程引擎的基础--都是图论,至少像在我在JWFD中引擎算法中用到的是自定义的广度优先
- oracle Health Monitor
daizj
oracleHealth Monitor
About Health Monitor
Beginning with Release 11g, Oracle Database includes a framework called Health Monitor for running diagnostic checks on the database.
About Health Monitor Checks
Health M
- JSON字符串转换为对象
dieslrae
javajson
作为前言,首先是要吐槽一下公司的脑残编译部署方式,web和core分开部署本来没什么问题,但是这丫居然不把json的包作为基础包而作为web的包,导致了core端不能使用,而且我们的core是可以当web来用的(不要在意这些细节),所以在core中处理json串就是个问题.没办法,跟编译那帮人也扯不清楚,只有自己写json的解析了.
- C语言学习八结构体,综合应用,学生管理系统
dcj3sjt126com
C语言
实现功能的代码:
# include <stdio.h>
# include <malloc.h>
struct Student
{
int age;
float score;
char name[100];
};
int main(void)
{
int len;
struct Student * pArr;
int i,
- vagrant学习笔记
dcj3sjt126com
vagrant
想了解多主机是如何定义和使用的, 所以又学习了一遍vagrant
1. vagrant virtualbox 下载安装
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
查看安装在命令行输入vagrant
2.
- 14.性能优化-优化-软件配置优化
frank1234
软件配置性能优化
1.Tomcat线程池
修改tomcat的server.xml文件:
<Connector port="8080" protocol="HTTP/1.1" connectionTimeout="20000" redirectPort="8443" maxThreads="1200" m
- 一个不错的shell 脚本教程 入门级
HarborChung
linuxshell
一个不错的shell 脚本教程 入门级
建立一个脚本 Linux中有好多中不同的shell,但是通常我们使用bash (bourne again shell) 进行shell编程,因为bash是免费的并且很容易使用。所以在本文中笔者所提供的脚本都是使用bash(但是在大多数情况下,这些脚本同样可以在 bash的大姐,bourne shell中运行)。 如同其他语言一样
- Spring4新特性——核心容器的其他改进
jinnianshilongnian
spring动态代理spring4依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- Linux设置tomcat开机启动
liuxingguome
tomcatlinux开机自启动
执行命令sudo gedit /etc/init.d/tomcat6
然后把以下英文部分复制过去。(注意第一句#!/bin/sh如果不写,就不是一个shell文件。然后将对应的jdk和tomcat换成你自己的目录就行了。
#!/bin/bash
#
# /etc/rc.d/init.d/tomcat
# init script for tomcat precesses
- 第13章 Ajax进阶(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Troubleshooting Crystal Reports off BW
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Troubleshooting+Crystal+Reports+off+BW#TroubleshootingCrystalReportsoffBW-TracingBOE
Quite useful, especially this part:
SAP BW connectivity
For t
- Java开发熟手该当心的11个错误
tomcat_oracle
javajvm多线程单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 正则表达式大全
yang852220741
html编程正则表达式
今天向大家分享正则表达式大全,它可以大提高你的工作效率
正则表达式也可以被当作是一门语言,当你学习一门新的编程语言的时候,他们是一个小的子语言。初看时觉得它没有任何的意义,但是很多时候,你不得不阅读一些教程,或文章来理解这些简单的描述模式。
一、校验数字的表达式
数字:^[0-9]*$
n位的数字:^\d{n}$
至少n位的数字:^\d{n,}$
m-n位的数字:^\d{m,n}$